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Abstract

We provide theoretical analysis of the statistical and computational properties of penalized

M -estimators that can be formulated as the solution to a possibly nonconvex optimization prob-

lem. Many important estimators fall in this category, including least squares regression with

nonconvex regularization, generalized linear models with nonconvex regularization, and sparse

elliptical random design regression. For these problems, it is intractable to calculate the global

solution due to the nonconvex formulation. In this paper, we propose an approximate regulariza-

tion path following method for solving a variety of learning problems with nonconvex objective

functions. Under a unified analytic framework, we simultaneously provide explicit statistical

and computational rates of convergence of any local solution obtained by the algorithm. Com-

putationally, our algorithm attains a global geometric rate of convergence for calculating the

full regularization path, which is optimal among all first-order algorithms. Unlike most existing

methods that only attain geometric rates of convergence for one single regularization parameter,

our algorithm calculates the full regularization path with the same iteration complexity. In par-

ticular, we provide a refined iteration complexity bound to sharply characterize the performance

of each stage along the regularization path. Statistically, we provide sharp sample complexity

analysis for all the approximate local solutions along the regularization path. In particular, our

analysis improves upon existing results by providing a more refined sample complexity bound

as well as an exact support recovery result for the final estimator. These results show that the

final estimator attains an oracle statistical property due to the usage of nonconvex penalty.

1 Introduction

This paper considers the statistical and computational properties of a family of penalized M -esti-

mators that can be formulated as

β̂λ ∈ argmin
β∈Rd

{
L(β) + Pλ(β)

}
, (1.1)
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where L(β) is a loss function while Pλ(β) is a penalty term with regularization parameter λ. A

familiar example is the Lasso estimator (Tibshirani, 1996), in which L(β) = ‖Xβ − y‖22/(2n) and

Pλ(β) = λ‖β‖1. Here X = (x1, . . . ,xn)T ∈ Rn×d is the design matrix, y = (y1, . . . , yn)T ∈ Rn is

the response vector, ‖ · ‖2 is the Euclidean norm, and ‖β‖1 =
∑d

j=1 |βj | is the `1 norm of β. In

general, we prefer the settings where both the loss function L(β) and the penalty term Pλ(β) in

(1.1) are convex, since convexity makes both statistical and computational analysis convenient.

Though significant progress has been made on understanding convex penalized M -estimators

(van de Geer, 2000; Bunea et al., 2007; van de Geer, 2008; Rothman et al., 2008; Wainwright, 2009;

Bickel et al., 2009; Zhang, 2009; Koltchinskii, 2009b; Raskutti et al., 2011; Negahban et al., 2012),

penalized M -estimators with nonconvex loss or penalty functions have recently attracted much

interest because of their more attractive statistical properties. Unlike the `1 penalty, which induces

significant estimation bias for parameters with large absolute values (Zhang and Huang, 2008),

nonconvex penalties such as the smoothly clipped absolute deviation (SCAD) penalty (Fan and Li,

2001) and minimax concave penalty (MCP) (Zhang, 2010a) can eliminate this estimation bias and

attain more refined statistical rates of convergence. As another example of penalized M -estimators

with nonconvex loss functions, we consider a semiparametric variant of the penalized least squares

regression. Recall that a penalized least squares regression estimator can be formulated as

β̂λ ∈ argmin
β∈Rd

{
1

2n
‖Xβ − y‖22 + Pλ(β)

}

= argmin
β∈Rd

{
1

2

(
1,−βT

)
Ŝ
(
1,−βT

)T
+ Pλ(β)

}
,

where Ŝ = (y,X)T (y,X) /n is the sample covariance matrix of a random vector (Y,XT )T ∈ Rd+1.

When the design matrix X contains heavy-tail data, we may resort to the elliptical random design

regression, which is a semiparametric extension of the Gaussian random design regression. More

specifically, we replace the sample covariance matrix Ŝ with a possibly indefinite covariance matrix

estimator K̂ (to be defined in §2.2), which is more robust within the elliptical family. Since K̂ does

not guarantee to be positive semidefinite, the loss function

L(β) = (1,−βT )K̂(1,−βT )T

could be nonconvex. Another example of nonconvex loss functions is the corrected regression for

error-in-variables linear models (Loh and Wainwright, 2012).

Though the global solutions of these nonconvex M -estimators enjoy nice statistical properties,

it is in general computationally intractable to obtain the global solutions. Instead, a more realistic

approach is to directly leverage standard optimization procedures to obtain a local solution β̂λ that

satisfies the first-order Karush-Kuhn-Tucker (KKT) condition

0 ∈ ∂
{
L
(
β̂λ
)

+ Pλ
(
β̂λ
)}
, (1.2)

where ∂(·) denotes the subgradient operator.

In the context of least squares regression with nonconvex penalties, several numerical procedures

have been proposed to find the local solutions, including local quadratic approximation (LQA) (Fan
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and Li, 2001), minorize-maximize (MM) algorithm (Hunter and Li, 2005), local linear approxima-

tion (LLA) (Zou and Li, 2008), and coordinate descent (Breheny and Huang, 2011; Mazumder et al.,

2011). The theoretical properties of the local solutions obtained by these numerical procedures are

in general unestablished. Only recently Zhang and Zhang (2012) showed that the gradient descent

method initialized at a Lasso solution attains a unique local solution that has the same statistical

properties as the global solution; Fan et al. (2012) proved that the LLA algorithm initialized with a

Lasso solution attains a local solution with oracle statistical properties. Similar conclusion was also

obtained by Zhang (2010b, 2012), where the LLA algorithm was referred to as multi-stage convex

relaxation. However, each stage of the LLA algorithm requires that we exactly calculate the solu-

tion to a Lasso problem, which is not practical in applications. Therefore, the total computational

complexity of the LLA algorithm is unclear.

In this paper, we propose an approximate regularization path following method for solving a

general family of penalized M -estimators with possibly nonconvex loss or penalty functions. Our

algorithm leverages the fast local convergence in the proximity of sparse solutions, which is also

observed by Luo and Tseng (1992); Nesterov (2007); Hale et al. (2008); Wright et al. (2009);

Agarwal et al. (2012); Xiao and Zhang (2012). More specifically, we consider a decreasing sequence

of regularization parameters {λt}Nt=0, where λ0 corresponds to an all-zero solution, and λN =

λtgt is the target regularization parameter that ensures the obtained estimator to achieve the

optimal statistical rate of convergence. For each λt, we construct a sequence of local quadratic

approximations of the loss function L(β), and utilize a variant of Nesterov’s proximal-gradient

method (Nesterov, 2007), which iterates over the updating step

β
(k+1)
t ← argmin

β∈Rd

{
L
(
β

(k)
t

)
+∇L

(
β

(k)
t

)T (
β − β(k)

t

)
+
L

(k)
t

2

∥∥β − β(k)
t

∥∥2

2
+ Pλt(β)

}
, k = 1, 2, . . . ,

(1.3)

where β
(k)
t and L

(k)
t corresponds to the k-th iteration of the proximal-gradient method for λt. Here

L
(k)
t is chosen by an adaptive line-search method, which will be specified in §3.2. Let β̂λt be an

exact local solution satisfying (1.2) with regularization parameter λt. As illustrated in Figure 1, for

each λt, our algorithm computes an approximation β̃t of the exact local solution β̂λt up to certain

optimization precision. Such an approximate local solution β̃t guarantees to be sparse, and therefore

falls into the fast convergence region corresponding to λt+1. In this way, the resulting procedure

attains a geometric rate of convergence within each path following stage, and therefore achieves

a global geometric rate of convergence for calculating the entire regularization path. Moreover,

without relying on the quality of the initial lasso solution as required by Zhang and Zhang (2012)

and Fan et al. (2012), we establish the nonasymptotic statistical rates of convergence and oracle

properties for all the approximate and exact local solutions along the full regularization path.

The idea of path following has been well-studied for convex sparse recovery problems (Osborne

et al., 2000; Efron et al., 2004; Hastie et al., 2005; Park and Hastie, 2007; Zhao and Yu, 2007;

Rosset and Zhu, 2007; Hale et al., 2008; Garrigues and Ghaoui, 2008; Wen et al., 2010; Friedman

et al., 2010; Xiao and Zhang, 2012; Gärtner et al., 2012; Mairal and Yu, 2012). Among them, Xiao

and Zhang (2012) proposed a proximal-gradient homotopy method for the least squares regression

with `1 penalty. Compared to these previous works, we consider a broader family of nonconvex

3
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Figure 1: For regularization parameter λt, β̂λt is an exact local solution satisfying (1.2) with regular-

ization parameter λt. Within the t-th path following stage, our algorithm achieves an approximate

local solution β̃t, which approximates the exact local solution β̂λt up to certain optimization pre-

cision. Our approximate path following algorithm ensures that β̃t is sparse and therefore falls into

the fast convergence region corresponding to regularization parameter λt+1.

M -estimators, including nonconvex penalty functions such as SCAD and MCP, as well as noncon-

vex loss functions such as semiparametric elliptical design loss. In particular, we provide sharp

computational and statistical analysis for all the approximate and exact local solutions attained by

the proposed approximate path following method.

The contributions of this paper are two folds: Computationally, we propose an optimization

algorithm that ensures a global geometric rate of convergence for nonconvex sparse learning prob-

lems, which is the fastest achievable rate among all first-order methods. In detail, recall that N is

the total number of path following stages. In the N -th path following stage, let εopt be the desired

optimization precision of the approximate local solution β̃N , we need no more than a logarithmic

number of the proximal-gradient update iterations defined in (1.3) to calculate the entire path:

Total # of proximal-gradient iterations ≤ C log

(
1

εopt

)
,

where C > 0 is a constant. Statistically, we prove that along the full regularization path, all the ap-

proximate local solutions obtained by our algorithm enjoy desirable statistical rates of convergence

for estimating the true parameter vector β∗. In detail, let s∗ be the number of nonzero entries of

β∗, the approximate local solution β̃t’s satisfy

∥∥β̃t − β∗
∥∥

2
≤ Cλt

√
s∗, for t = 1, . . . , N (1.4)

with high probability. In particular, within the N -th path following stage, we have λN = λtgt =

C ′
√

log d/n. Here C and C ′ are positive constants that do not dependent on d and n. In certain

regimes, the final approximate local solution β̃N achieves the optimal statistical rate of conver-

gence. Moreover, we prove that within the t-th path following stage, the iterative solution sequence{
β

(k)
t

}∞
k=0

defined by (1.3) converges towards a unique exact local solution β̂λt , which enjoys a

more refined oracle statistical property. More specifically, let s∗1 be the number of “large” nonzero

4



coefficients of β∗ and s∗2 = s∗−s∗1 be the number of “small” nonzero coefficients (detailed definitions

of s∗1 and s∗2 are provided in Theorem 4.7), we have

∥∥β̂λt−β∗
∥∥

2
≤ C

√
s∗1
n

+ C ′
√
s∗2λt, for t = 1, . . . , N (1.5)

with high probability. In particular, for the final stage we have λN = λtgt = C ′′
√

log d/n. Here C,

C ′ and C ′′ are positive constants that don’t dependent on d and n. Note that the oracle statistical

property in (1.5) is significantly sharper than the rate of convergence in (1.4), e.g., when s∗ = s∗1
and t = N , the right-hand side of (1.4) is of the order

√
s∗ log d/n, while the right-hand side of

(1.5) is of the order
√
s∗/n. Furthermore, we also prove that under suitable conditions, β̂λt exactly

recovers the support of β∗, i.e.,

supp
(
β̂λt
)

= supp(β∗).

In summary, our joint analysis of the statistical and computational properties provides a theoretical

characterization of the entire regularization path.

In an independent work, Loh and Wainwright (2013) considered similar problems and proved

that all local solutions of various penalized M -estimators have good statistical properties if the

loss and penalty functions satisfy the restricted strong convexity and other regularity conditions.

Our results are different from theirs in two aspects: (i) They provided a set of sufficient conditions

under which local optima have desired theoretical properties, and verified that the composite gra-

dient descent algorithm satisfies these conditions. However, their conditions can not be applied to

analyze our path following method, since we need to simultaneously analyze all the approximate

local solutions along the entire regularization path. Our analysis of the full regularization path is a

stronger result that requires more sophisticated proof techniques. (ii) Unlike their analysis, which

provided a global characterization of local solutions but required additional regularity assumptions,

our theoretical analysis of statistical performance is embedded in the analysis of the optimization

procedure for the approximate local solutions attained by the procedure. In particular, our statis-

tical results apply to all the approximate local solutions along the full regularization path, which

is built upon a more fine-grained analysis of the sparsity pattern of all the intermediate solutions

obtained from the proximal-gradient iterations. (iii) Moreover, in the regime where the absolute

values of β∗’s nonzero coefficients are “large”, we provide a more refined oracle rate (1.5) of the local

solutions along the regularization path, which clearly shows the theoretical benefits of nonconvex

penalty functions over `1 regularization. Our statistical results are sharper than those provided by

them, which are the same as using standard `1 regularization. In addition, we establish the exact

support recovery results while they didn’t.

The rest of this paper is organized as follows. First we briefly introduce some useful notation.

In §2 we introduce sparse learning problems with possibly nonconvex loss and penalty functions. In

§3 we introduce our approximate regularization path following method. In §4 we present the main

theoretical results concerning the computational efficiency and statistical accuracy of the proposed

procedure. In §5 we prove the theoretical results in §4. Numerical results are presented in §6.

Notation: Let β = (β1, . . . , βd)
T ∈ Rd. For q ∈ [1,+∞), we denote the `q norm of β by ‖β‖q =(∑d

j=1 |βj |q
)1/q

. Specifically, we define ‖β‖∞ = max1≤j≤d {|βj |} and ‖β‖0 = card {supp(β)}, where

supp(β) = {j : βj 6= 0} and card{·} is the cardinality of a set. We denote the `q ball {β : ‖β‖q ≤ R}
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by Bq(R). For a set S, we denote its cardinality by |S| and its complement by S̄. We define βS ∈ Rd
and βS̄ ∈ Rd as

(βS)j = 1I(j ∈ S) · βj , (βS̄)j = 1I(j /∈ S) · βj , for j = 1, . . . , d and S, S̄ ⊆ {1, . . . , d},

where 1I(·) denotes the indicator function. We denote all-zero matrices by 0, and the diagonal matrix

that has x1, . . . , xd on its diagonal by diag{x1, . . . , xd}. Meanwhile, let M ∈ Rd×d be a matrix, we

overload diag(M) to be a diagonal matrix with diagonal entries [diag(M)]jj = Mjj (j = 1, . . . , d).

For a function f(β), we denote its gradient by ∇f(β) and its subgradient by ∂f(β). Specifically,

the derivative of a differentiable univariate function f(x) is denoted by f ′(x). If random vectors

Z1 and Z2 have the same distribution, we denote by Z1
d
= Z2. The d-dimensional `2 unit sphere

is denoted by Sd−1. Throughout this paper, we denote β̂ and β̃ to be the exact local solution and

approximate local solution respectively. We index β̂ with the corresponding regulation parameter

λ, e.g., β̂λ. In the proposed method, we use subscript t to index the path following stages, e.g, the

approximate local solution obtained within the t-th stage is denoted by β̃t. Within the t-th stage,

we index the proximal-gradient iterations with superscript (k), e.g., β
(k)
t . For notational simplicity,

we use generic absolute constants C,C ′, . . ., whose value may change from line to line.

2 Some Nonconvex Sparse Learning Problems

Many theoretical results on penalized M -estimators rely on the condition that the loss and penalty

functions are convex, since convexity makes both computational and statistical analysis convenient.

However, the statistical performance of the estimator obtained from these convex formulations could

be suboptimal in some settings. In the following, we introduce several nonconvex sparse learning

problems as motivating examples.

2.1 Nonconvex Penalty

Throughout this paper, we consider decomposable penalty functions

Pλ(β) =
d∑

j=1

pλ(βj),

e.g., the `1 penalty λ‖β‖1 =
∑d

i=1 λ|βj |. When the minimum of |β∗j | > 0 is not close to zero, the

`1 penalty introduces large bias in parameter estimation. To remedy this effect, Fan and Li (2001)

proposed the SCAD penalty

pλ(βj) = λ

∫ |βj |

0

{
1I(z ≤ λ) +

(aλ− z)+

(a− 1)λ
1I(z > λ)

}
dz, (2.1)

= λ|βj | · 1I(|βj | ≤ λ)−
(
β2
j − 2aλ|βj |+ λ2

)
/
(
2(a− 1)

)
· 1I(λ < |βj | ≤ aλ)

+
(a+ 1)λ2

2
· 1I(|βj | > aλ), a > 2,

6



and Zhang (2010a) proposed the MCP penalty

pλ(βj) = λ

∫ |βj |

0

(
1− z

λb

)
+

dz, (2.2)

=

(
λ|βj | −

β2
j

2b

)
· 1I(|βj | ≤ bλ) +

bλ2

2
· 1I(|βj | > bλ), b > 0.

See Zhang and Zhang (2012) for a detailed survey. We illustrate these nonconvex penalty functions

in Figure 2(a). These nonconvex penalties can be formulated as the sum of the `1 penalty and a

concave part

pλ(βj) = λ|βj |+ qλ(βj), (2.3)

where the specific forms of the concave component qλ(βj) are

qλ(βj) =





2λ|βj | − β2
j − λ2

2(a− 1)
· 1I(λ < |βj | ≤ aλ) +

(a+ 1)λ2 − 2λ|βj |
2

· 1I(|βj | > aλ), SCAD,

−
β2
j

2b
· 1I(|βj | ≤ bλ) +

(
bλ2

2
− λ|βj |

)
· 1I(|βj | > bλ), MCP,

which are illustrated in Figure 2(b). The corresponding q′λ(βj)’s are also illustrated in Figure 2(c).

−4 −2 0 2 4
0

1

2

3

4

p
λ
(β

j
)

βj

 

 

MCP
`1
SCAD

−4 −2 0 2 4
−3

−2

−1

0

q
λ
(β

j
)

βj

 

 

MCP
SCAD

−4 −2 0 2 4
−1

−0.5

0

0.5

1

q
′ λ
(β

j
)

βj

 

 

MCP
SCAD

(a) (b) (c)

Figure 2: An illustration of nonconvex penalties: (a) Plots of pλ(βj) for MCP, `1, and SCAD; (b)

Plots of qλ(βj) for MCP and SCAD; (c) Plots of q′λ(βj) for MCP and SCAD. Here pλ(βj) is the

penalty function evaluated at the j-th dimension of β, qλ(βj) is the concave component of pλ(βj),

and q′λ(βj) is the derivative of qλ(βj). Here we set a = 2.1 for SCAD, b = 2 for MCP, and λ = 1.

In fact, our method and theory are not limited to these specific forms of pλ(βj) and qλ(βj). More

generally, we only rely on the following regularity conditions on the concave component qλ(βj):

Regularity Conditions on Nonconvex Penalty

(a) q′λ(βj) is monotone and Lipschitz continuous, i.e., for β′j > βj , there exist two constants ζ− ≥ 0

and ζ+ ≥ 0 such that

−ζ− ≤
q′λ(β′j)− q′λ(βj)

β′j − βj
≤ −ζ+ ≤ 0;
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(b) qλ(βj) is symmetric, i.e., qλ(−βj) = qλ(βj) for any βj ;

(c) qλ(βj) and q′λ(βj) pass through the origin, i.e., qλ(0) = q′λ(0) = 0;

(d) q′λ(βj) is bounded, i.e., |q′λ(βj)| ≤ λ for any βj ;

(e) q′λ(βj) has bounded difference with respect to λ:
∣∣q′λ1(βj)− q′λ2(βj)

∣∣ ≤ |λ1 − λ2| for any βj .

In regularity condition (a), ζ− and ζ+ are in fact two parameters that control the concavity of

qλ(βj). Note that the second order derivative of a function characterizes its convexity/concavity.

Taking β′j → βj in regularity condition (a), we have q′′λ(βj) ∈ [−ζ−,−ζ+] (here we ignore those βj ’s

where q′′λ(βj) doesn’t exist), which suggests larger ζ− and ζ+ allow qλ(βj) to be more concave. For

SCAD, we take ζ− = 1/(a−1) and ζ+ = 0. For MCP, we take ζ− = 1/b and ζ+ = 0. In Figure 2(b)

and Figure 2(c), we can verify that regularity conditions (a)−(d) hold for MCP and SCAD. For

MCP, we illustrate regularity condition (e) in Figure 5(a) of Appendix A. For SCAD, we illustrate

property (e) in Figure 5(b) (for λ2 ≥ aλ1) and Figure 5(c) of Appendix A (for λ2 < aλ1).

By (2.3) we have Pλ(β) =
∑d

j=1 pλ(βj) = λ‖β‖1 +
∑d

j=1 qλ(βj). For notational simplicity, we

define

Qλ(β) =
d∑

j=1

qλ(βj) = Pλ(β)− λ‖β‖1. (2.4)

Hence Qλ(β) denotes the decomposable concave component of the nonconvex penalty Pλ(β).

2.2 Nonconvex Loss Function

In this paper, we focus on an example of nonconvex loss function named semiparametric elliptical

design regression. Recall that the elliptical distribution is defined as:

Definition 2.1 (Elliptical distribution). For µ = (µ1, . . . , µd)
T ∈ Rd and Σ ∈ Rd×d with rank(Σ) =

k ≤ d, a random vectorW = (W1, . . . ,Wd)
T follows an elliptical distribution denoted by ECd(µ,Σ,Ξ),

if and only if

W
d
= µ+ ΞAU .

Here U is a random vector uniformly distributed on the unit sphere Sk−1; Ξ ≥ 0 is a scalar random

variable independent of U ; A ∈ Rd×q is a deterministic matrix such that AAT = Σ. We call Σ the

scatter matrix. The generalized correlation matrix is defined as Σ0 = diag(Σ)−1/2 ·Σ ·diag(Σ)−1/2.

When E(Ξ2) exists, Σ0 is the correlation matrix of W .

Remark 2.2. Note that simultaneously scaling Ξ and U (e.g., Ξ→ Ξ/C and U → U/C, where C

is a constant) leads to the same elliptical distribution. To make this model identifiable, we assume

µj = E(Wj) and Σjj = Var(Wj).

Remark 2.3. The elliptical distribution family includes a variety of possibly heavy-tail distribu-

tions: multivariate Gaussian, multivariate Cauchy, Student’s t, logistic, Kotz, symmetric Pearson

type-II and type-VII distributions.
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For semiparametric elliptical design regression, we have n pairs of observations z1 = (y1,x
T
1 )T ,

. . . , zn = (yn,x
T
n )T of a random vector Z = (Y,XT )T ∈ Rd+1 that follows the (d+ 1)-dimensional

elliptical distribution defined in Definition 2.1. We can verify that (Y |X = x) follows a univariate

elliptical distribution. We assume E(Y |X = x) = xTβ∗. Then we can define the population version

of the semiparametric elliptical design regression estimator as

β̆=argmin
β∈Rd

{
1

2
EX,Y

((
Y −XTβ

)2)
+Pλ(β)

}
=argmin

β∈Rd

{
1

2

(
1,−βT

)
ΣZ

(
1,−βT

)T
+Pλ(β)

}
. (2.5)

The above procedure is not practically implementable, since the population covariance matrix ΣZ

is unknown in (2.5). In practice, we need to estimate the population covariance matrix ΣZ . For

this, we propose a rank-based covariance matrix estimator K̂Z , which is obtained in two steps as

described below:

Elliptical Covariance Matrix Estimation

S1. In the first step, we define a rank-based estimator R̂Z for the generalized correlation matrix

Σ0
Z using the Kendall’s tau statistic. Let z1, . . . , zn ∈ Rd+1 with zi = (zi1, . . . , zi(d+1))

T be n

independent observations of Z. The Kendall’s tau correlation coefficient is defined as

τ̂jk(z1, . . . , zn)=





∑

1≤i<i′<n

2 sign
(
zij−zi′j

)
sign (zik−zi′k)

n(n− 1)
, for j 6= k,

1, for j = k.

We define the Kendall’s tau correlation matrix estimator as

R̂Z =
[(

R̂Z

)
jk

]
=
[
sin
(π

2
τ̂jk (z1, . . . , zn)

)]
. (2.6)

Han and Liu (2012); Liu et al. (2012); Han and Liu (2013) showed that R̂Z is a robust

estimator of the population generalized correlation matrix Σ0
Z , and is invariant to different

generating variable Ξ within the whole elliptical family.

S2. In the second step, we construct a covariance matrix estimator

K̂Z =
[(

K̂Z

)
jk

]
=
[(

R̂Z

)
jk
· σ̂j σ̂k

]
, (2.7)

where σ̂1, . . . , σ̂d+1 are the estimators of the standard deviations of Z1, . . . , Zd+1. We calculate

σ̂1, . . . , σ̂d+1 using the Catoni’s M -estimator (Catoni, 2012) described in Appendix D. The

main advantage of the Cantoni’s estimator is that, for a fixed confidence level, it achieves the

same deviation behavior as a Gaussian random variable under a weak moment condition.

Note that K̂Z is not necessarily positive semidefinite, which implies that the loss function L(β)

in semiparametric elliptical design regression

L(β) =
(
1,−βT

)
K̂Z

(
1,−βT

)T

is possibly nonconvex.

9



3 Approximate Regularization Path Following Method

Before we get into details, we first present the high level idea of approximate regularization path

following. We then introduce the basic building block of our path following method — a proximal-

gradient method tailored to nonconvex problems.

3.1 Approximate Regularization Path Following

Fast local geometric convergence in the proximity of sparse solutions has been observed by many

authors (Hale et al., 2008; Wright et al., 2009; Wen et al., 2010; Agarwal et al., 2012; Xiao and

Zhang, 2012). We exploit such fast local convergence under an approximate path framework to

achieve fast global convergence.

Initialization: In (1.1), when the regularization parameter λ is sufficiently large, the solution to

sparse learning problems is an all-zero vector. Recall that any exact local solution β̂λ satisfies the

first-order optimality condition, 0 ∈ ∂
{
L
(
β̂λ
)

+Pλ
(
β̂λ
)}

. Since the nonconvex penalty Pλ(β) can

be formulated as Pλ(β) = Qλ(β)+λ‖β‖1, where Qλ(β) is defined in (2.4), the first-order optimality

condition implies there should exist some subgradient ξ ∈ ∂‖β̂λ‖1 such that

0 = ∇L
(
β̂λ
)

+Qλ
(
β̂λ
)

+ λξ. (3.1)

Let λ be chosen such that β̂λ = 0. By regularity condition (c), we have ∇Qλ(0) = 0. Meanwhile,

since ξ ∈ ∂‖0‖1, we have ‖ξ‖∞ ≤ 1, which implies ‖∇L(0)‖∞ ≤ λ in (3.1). Hence, λ0 = ‖∇L(0)‖∞
is the smallest regularization parameter such that any exact local solution β̂λ to the minimization

problem (1.1) is all-zero. We choose this λ0 to be the initial parameter of our regularization path.

Approximate Path Following: Let λtgt ∈ (0, λ0) be the target regularization parameter in (1.1).

We consider a decreasing sequence of regularization parameters {λt}Nt=0, where

λt = ηtλ0 (t = 0, . . . , N), λN = λtgt, and η ∈ [0.9, 1). (3.2)

Here η is an absolute constant that doesn’t scale with sample size n and dimension d. In §4 and §5
we will show that such a range of η ensures the global geometric rate of convergence. Consequently,

since we have λtgt = λ0η
N in (3.2), the number of path following stages is

N =
log(λ0/λtgt)

log(η−1)
. (3.3)

Without loss of generality, we assume that η is properly chosen such that N is an integer. We will

show in §4 that, λtgt scales with sample size n and dimension d. Since η is a constant, the number

of stages N also scales with n and d. Within the t-th (t = 1, . . . , N) path following stage, we aim

to obtain a local solution to the minimization problem min
{
L(β) + Pλt(β)

}
.

As shown in Lines 5−9 of Algorithm 1, within the t-th (t = 1, . . . , N − 1) path following

stage, we exploit a variant of proximal-gradient method for nonconvex problems (Algorithm 3) to

obtain an approximate solution β̃t that corresponds to the regularization parameter λt = ηtλ0. To

ensure that each path following stage enjoys a fast geometric rate of convergence, we employ an

approximation path following strategy. More specifically, we use the approximate local solution

β̃t−1 obtained within the (t−1)-th path following stage to initialize the t-th stage (Line 8 and Line

10



12 of Algorithm 1). Recall that we need to adaptively search for the best L
(k)
t (k = 0, 1, . . .) in

(1.3). To achieve computational efficiency, within the (t− 1)-th path following stage, we store the

chosen L
(k)
t−1 at the last proximal-gradient iteration as Lt−1. Within the t-th stage we initialize the

search for L
(0)
t with Lt−1 (Line 8 and Line 12 of Algorithm 1), which will be explained in §3.2.

Algorithm 1 The approximate path following method, which solves for a decreasing sequence of

regularization parameters {λt}Nt=0. Within the t-th path following stage, we employ the proximal-

gradient method illustrated in Algorithm 3 to achieve an approximate local solution β̃t for λt. This

approximate local solution is then used to initialize the (t+ 1)-th stage.

1:
{
β̃t
}N
t=1
← Approximate-Path-Following(λtgt, εopt)

2: input: λtgt > 0, εopt > 0 {Here we set εopt � λtgt/4.}
3: parameter: η ∈ [0.9, 1), R > 0, Lmin > 0, λ0 = ‖∇L(0)‖∞
{For logistic loss, we set R ∈ (0,+∞); For other loss functions, we set R = +∞.}
{In practice, we set Lmin to be a sufficiently small value, e.g., 10−6.}

4: initialize: β̃0 ← 0, L0 ← Lmin, N ← log(λ0/λtgt)/log(η−1)

5: for t = 1, . . . , N − 1 do

6: λt ← ηtλ0

7: εt ← λt/4

8:
{
β̃t, Lt

}
← Proximal-Gradient

(
λt, εt, β̃t−1, Lt−1, R

)
as in Algorithm 3

9: end for

10: λN ← λtgt

11: εN ← εopt

12:
{
β̃N , LN

}
← Proximal-Gradient

(
λN , εN , β̃N−1, LN−1, R

)

13: return
{
β̃t
}N
t=1

Configuration of Optimization Precision: We set the optimization precision εt for the t-th

(t = 1, . . . , N − 1) stage to be λt/4 (Line 7 of Algorithm 1). Within the N -th path following stage

where λN = λtgt (Line 10), we solve up to high optimization precision εopt � λtgt/4 (Line 11). The

intuition behind such a configuration of optimization precision is explained as follows:

• For t = 1, . . . , N − 1, recall the exact local solution β̂λt is an estimator of the true parameter

vector β∗ corresponding to the regularization parameter λt. According to high-dimensional

statistical theory, the statistical error of β̂λt should be upper bounded by Cλt
√
s∗ with high

probability, where s∗ = ‖β∗‖0. In Lemma 5.1 we will prove that, if the optimization error of

the approximate local solution β̃t is at most λt/4, then β̃t lies within a ball of radius C ′λt
√
s∗

centered at β∗ with high probability. That is to say, the approximate local solution β̃t has

the same order of statistical error as the exact solution β̂λt , and therefore enjoys certain

desired statistical recovery properties. In particular, in Theorem 5.5 we will prove that, β̃t
is guaranteed to be sparse, and thus falls into the fast convergence region of the next path

following stage.

• However, for t = N , we need to solve up to high optimization precision εopt � λtgt/4. This

is because, even though β̃t and β̂λt both have statistical error of the order λt
√
s∗, in certain
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regimes the exact local solution β̂λt is able to achieve an improved recovery performance due

to the usage of nonconvex penalties (as shown in (1.5), which will be proved in Theorem 4.8).

Therefore, within the final stage we need to obtain an approximate solution β̃N as close to the

exact local solution β̂λtgt as possible, so that β̃N has a faster statistical rate of convergence.

In Algorithm 1, R > 0 (Line 3) is a parameter that decides the radius of the constraint that

is used in the proximal-gradient method (Line 8 and Line 12). In detail, for least squares loss and

semiparametric elliptical design loss, we do not need any constraint. Therefore, we set R = +∞.

However, for logistic loss we need to impose an `2 constraint of radius R ∈ (0,+∞). Here Lmin is

a parameter used in the proximal-gradient method (Line 3 of Algorithm 3), which is often set to

be a sufficiently small value in practice, e.g., Lmin = 10−6. We will explain with detail in §3.2.

3.2 Proximal-Gradient Method for Nonconvex Problems

Before we introduce our proximal-gradient method that is tailored to nonconvex problems, we first

give a brief introduction to Nesterov’s proximal-gradient method (Nesterov, 2007), which solves the

following convex optimization problem

minimize φλ(β), where φλ(β) = L(β) + Pλ(β), β ∈ Ω. (3.4)

Here L(β) is convex and differentiable, Pλ(β) is convex but possibly nonsmooth, and Ω is a closed

convex set.

Recall that β
(k)
t corresponds to the k-th iteration of the proximal-gradient method within the

t-th path following stage. Nesterov’s proximal-gradient method updates β
(k)
t to be the minimizer

of the following local quadratic approximation of φλt(β) at β
(k−1)
t

ψ
L
(k)
t ,λt

(
β;β

(k−1)
t

)
= L

(
β

(k−1)
t

)
+∇L

(
β

(k−1)
t

)T (
β−β(k−1)

t

)
+
L

(k)
t

2

∥∥β−β(k−1)
t

∥∥2

2
+ Pλt(β), (3.5)

where L
(k)
t > 0 is chosen by line search.

However, Nesterov’s proximal-gradient method requires both L(β) and Pλ(β) in (3.4) to be

convex. However, in the optimization problem (1.1) considered in this paper, L(β) and Pλ(β) may

no longer be convex. To extend the proximal-gradient method to nonconvex settings, we adopt an

alternative formulation of the objective function.

Recall that the nonconvex penalty can be written as Pλ(β) = λ‖β‖1 +Qλ(β), where Qλ(β) is

defined in (2.4). For notational simplicity, we denote L(β) +Qλ(β) by L̃λ(β). Consequently, the

objective function φλ(β) = L(β) + Pλ(β) = L(β) +Qλ(β) + λ‖β‖1 can be reformulated as

φλ(β) = L̃λ(β) + λ‖β‖1, (3.6)

where we can view L̃λ(β) as a surrogate loss function and λ‖β‖1 as a new penalty function. Such a

reformulation ensures the convexity of the new penalty function. Moreover, in Lemma 5.1 we will

prove that, the surrogate loss function L̃λ(β) is actually strongly convex under certain conditions,

which guarantee to hold along the full regularization path. Correspondingly, we modify Nesterov’s

proximal-gradient method to minimize the local quadratic approximation defined as

ψ
L
(k)
t ,λt

(
β;β

(k−1)
t

)
= L̃λt

(
β

(k−1)
t

)
+∇L̃λt

(
β

(k−1)
t

)T (
β−β(k−1)

t

)
+
L

(k)
t

2

∥∥β−β(k−1)
t

∥∥2

2
+ λt‖β‖1.(3.7)

12



Unlike (3.5), we use a quadratical approximation to the surrogate loss function L̃λt(β) in (3.7), but

instead of the original loss function L(β). At the k-th iteration of the proximal-gradient method,

we update β
(k)
t to be the minimizer of the quadratic approximation defined in (3.7), i.e.,

β
(k)
t ← argmin

β∈Ω

{
ψ
L
(k)
t ,λt

(
β;β

(k−1)
t

)}
. (3.8)

Now we specify the constraint set Ω in (3.8). For L(β) being least squares or semiparametric

elliptical design loss, we set Ω = Rd. For logistic loss, we set Ω = B2(R) with R ∈ (0,+∞), where

B2(R) is a centered `2 ball of radius R. In Lemma 5.1 we will show that, in the setting of logistic loss,

the boundedness of
∥∥β(k)

t

∥∥
2
’s is essential for establishing the strong convexity of the surrogate loss

function L̃λt(β) along the full regularization path. To unify the notations, we consider Ω = B2(R)

throughout — when the constraint set Ω = Rd, we set R = +∞. Correspondingly, we denote (3.8)

by

β
(k)
t ← T

L
(k)
t ,λt

(
β

(k−1)
t ;R

)
. (3.9)

In the sequel, we provide the detailed update schemes for the nonconvex problems discussed in §2:

Update Schemes of Proximal-Gradient Method for Nonconvex Problems

• When Ω = Rd, T
L
(k)
t ,λt

(
β

(k−1)
t ; +∞

)
is a soft-thresholding operator taking the form

(
T
L
(k)
t ,λt

(
β

(k−1)
t ; +∞

))
j

=

{
0 if

∣∣β̄j
∣∣ ≤ λt/L(k)

t ,

sign
(
β̄j
)(∣∣β̄j

∣∣− λt/L(k)
t

)
if
∣∣β̄j
∣∣ > λt/L

(k)
t ,

(3.10)

for j = 1, . . . , d, where

β̄ = β
(k−1)
t − 1

L
(k)
t

∇L̃λt
(
β

(k−1)
t

)
= β

(k−1)
t − 1

L
(k)
t

(
∇L
(
β

(k−1)
t

)
+∇Qλt

(
β

(k−1)
t

))
, (3.11)

and β̄j is the j-th dimension of β̄.

• When Ω = B2(R), T
L
(k)
t ,λt

(
β

(k−1)
t ;R

)
is obtained by projecting T

L
(k)
t ,λt

(
β

(k−1)
t ; +∞

)
defined

in (3.10) onto B2(R), i.e.,

T
L
(k)
t ,λt

(
β

(k−1)
t ;R

)
=





T
L
(k)
t ,λt

(
β

(k−1)
t ; +∞

)
if
∥∥T

L
(k)
t ,λt

(
β

(k−1)
t ; +∞

)∥∥
2
< R,

R · T
L
(k)
t ,λt

(
β

(k−1)
t ; +∞

)

∥∥T
L
(k)
t ,λt

(
β

(k−1)
t ; +∞

)∥∥
2

if
∥∥T

L
(k)
t ,λt

(
β

(k−1)
t ; +∞

)∥∥
2
≥ R.

(3.12)

See Appendix B for a detailed derivation. In the following, we specify ∇L(β) and ∇Qλt(β) in

(3.11) for the nonconvex problems discussed in §2:
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• For the (nonconvex) loss functions discussed in §2, ∇L(β) takes the forms of

∇L(β) =





1

n
XT
(
Xβ − y

)
, least squares loss,

1

n

n∑

i=1

xi

(
exp
(
xTi β

)

1 + exp
(
xTi β

) − yi
)
, logistic loss,

K̂Xβ − K̂X,Y , semiparametric elliptical design loss,

where K̂X ∈ Rd×d and K̂X,Y ∈ Rd×1 are defined as the submatrices of K̂Z , i.e.,

K̂Z =

(
K̂Y K̂T

X,Y

K̂X,Y K̂X

)
. (3.13)

• For the nonconvex penalty functions discussed in §2, ∇Qλt(β) takes the forms of

(
∇Qλt(β)

)
j

=





λt sign(βj)− βj
a− 1

· 1I
(
λt < |βj | ≤ aλt

)
− λt sign(βj) · 1I

(
|βj | > aλt

)
, SCAD,

− βj
b
λt sign(βj) · 1I

(
|βj | ≤ bλt

)
− λt sign(βj) · 1I

(
|βj | > bλt

)
, MCP,

where a > 2, b > 0.

Line-Search Method: Before we present the proposed proximal-gradient method in detail, we

briefly introduce a line-search algorithm, which adaptively searches for the best quadratic coeffi-

cient L
(k)
t of the local quadratic approximation (3.7). As shown in Lines 4−7 of Algorithm 2, the

main idea of line-search is to iteratively increase L
(k)
t by a factor of two and compute the corre-

sponding β
(k)
t , until the local approximation ψ

L
(k)
t ,λt

(
β

(k)
t ;β

(k−1)
t

)
becomes a tight upper bound of

the objective function φλt
(
β

(k)
t

)
. We will theoretically characterize the computational complexity

of this line-search method in Remark 4.6 and specify the range of L
(k)
t in Theorem 5.5.

Algorithm 2 The line-search method used to search for the best L
(k)
t and compute the correspond-

ing β
(k)
t . Here φλt(β) is the objective function defined in (3.4), and ψ

L
(k)
t ,λt

(
β;β

(k−1)
t

)
is the local

quadratic approximation of φλt(β) defined in (3.7).

1:
{
β

(k)
t , L

(k)
t

}
← Line-Search

(
λt,β

(k−1)
t , Linit, R

)

2: input: λt > 0,β
(k−1)
t ∈ Rd, Linit > 0, R > 0

3: initialize: L
(k)
t ← Linit

4: repeat

5: β
(k)
t ← T

L
(k)
t ,λt

(
β

(k−1)
t ;R

)
as defined in (3.9)

6: if φλt
(
β

(k)
t

)
> ψ

L
(k)
t ,λt

(
β

(k)
t ;β

(k−1)
t

)
then L

(k)
t ← 2L

(k)
t

7: until φλt
(
β

(k)
t

)
≤ ψ

L
(k)
t ,λt

(
β

(k)
t ;β

(k−1)
t

)

8: return
{
β

(k)
t , L

(k)
t

}
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Stopping Criterion: Now we introduce the stopping criterion of our proximal-gradient method.

In other words, we specify the optimality conditions that should be satisfied by the approximate

solution β̃t attained by our proximal-gradient method.

It is known that any exact local solution β̂λ to the optimization problem

minimize φλ(β), where φλ(β) = L̃λ(β) + λ‖β‖1, β ∈ Ω

satisfies the optimality condition, i.e, there exists some ξ ∈ ∂
∥∥β̂λ

∥∥
1

such that

(
β̂λ − β

)T(∇L̃λ
(
β̂λ
)

+ λξ
)
≤ 0, for any β ∈ Ω. (3.14)

We can understand this optimality condition as follows: Locally at β̂λ, any feasible direction pointed

at β̂λ, i.e.,
(
β̂λ−β

)
where β ∈ Ω, leads to a decrease in the objective function value φλ(β), because

as shown in (3.14), such a direction forms an obtuse angle with the (sub)gradient vector of φλ(β)

evaluated at β̂λ. If β̂λ lies in the interior of Ω, e.g., Ω = Rd, then (3.14) reduces to the known

first-order KKT condition,

∇L̃λ
(
β̂λ
)

+ λξ = 0, where ξ ∈ ∂
∥∥β̂λ

∥∥
1
. (3.15)

To see this, given β̂λ lies in the interior of Ω, we have
(
β̂λ + Cv

)
∈ Ω and

(
β̂λ − Cv

)
∈ Ω for any

fixed v ∈ Rd and C > 0 sufficiently small. Setting β in (3.14) to be these two values, we obtain

vT
(
∇L̃λ

(
β̂λ
)

+ ξ
)

= 0, which further implies (3.15) since v is arbitrarily chosen.

Based on the optimality condition in (3.17), we measure the suboptimality of a β ∈ Ω with

ωλ(β) = min
ξ′∈∂‖β‖1

max
β′∈Ω

{
(β − β′)T
‖β − β′‖1

(
∇L̃λ(β) + λξ′

)}
. (3.16)

To understand this measure of suboptimality, first note that, if β is an exact local solution, then we

have ωλ(β) ≤ 0 by (3.14). Otherwise, if β is close to some exact local solution, then ωλ(β) is some

small positive value. When β lies in the interior of Ω, then (3.16) reduces to a more straightforward

ωλ(β) = min
ξ′∈∂‖β‖1

{∥∥∇L̃λ(β) + λξ′
∥∥
∞

}
. (3.17)

This is because for any fixed v ∈ Rd, we have (β+Cv) ∈ Ω for C > 0 sufficiently small. Setting β

to be this value in (3.16), we have

ωλ(β) = min
ξ′∈∂‖β‖1

max
v∈Rd

{
vT

‖v‖1
(
∇L̃λ(β) + λξ′

)}
= min
ξ′∈∂‖β‖1

{∥∥∇L̃λ(β) + λξ′
∥∥
∞

}
,

where the second equality follows from the duality between `1 and `∞ norm.

Equipped with the suboptimality measure ωλ(β) defined in (3.16), we can define the stopping

criterion of our proximal-gradient method within the t-th path following stage to be ωλt
(
β

(k)
t

)
≤ εt,

where εt > 0 is the desired optimization precision (Line 9 of Algorithm 3). Therefore, the proximal-

gradient method achieves an approximate local solution β̃t with suboptimality εt. Recall that within

the t-th path following stage (t = 1, . . . , N − 1), we set εt to be λt/4 (Line 7 of Algorithm 1), while

within the N -th path following stage, we set εt = εopt � λtgt/4 (Line 11 of Algorithm 1).
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Algorithm 3 The proximal-gradient method for nonconvex problems, which iteratively leverages

the line-search method illustrated in Algorithm 2 at each iteration.

1:
{
β̃t, Lt

}
← Proximal-Gradient

(
λt, εt,β

(0)
t , L

(0)
t , R

)

2: input: λt > 0, εt > 0,β
(0)
t ∈ Rd, L(0)

t > 0, R > 0

3: parameter: Lmin > 0

4: initialize: k ← 0

5: repeat

6: k ← k + 1

7: Linit ← max
{
Lmin, L

(k−1)
t /2

}

8: β
(k)
t , L

(k)
t ← Line-Search

(
λt,β

(k−1)
t , Linit, R

)
as in Algorithm 2

9: until ωλt
(
β

(k)
t

)
≤ εt as defined in (3.16)

10: β̃t ← β
(k)
t

11: Lt ← L
(k)
t

12: return
{
β̃t, Lt

}

Proposed Proximal-Gradient Method: We are now ready to present the proposed proximal-

gradient method in detail. Recall that, within the t-th stage of our path following algorithm, we

employ the proximal-gradient method to obtain a desired approximate local solution β̃t (Line 8

and Line 12 of Algorithm 1). As shown in Line 8 of Algorithm 3, at the k-th iteration of our

proximal-gradient method, we employ the line-search method (Algorithm 2) to search for the best

L
(k)
t and calculate the corresponding β

(k)
t .

At the k-th iteration of the proximal-gradient method, we set the initial value Linit of the line-

search procedure to be max
{
Lmin, L

(k−1)
t /2

}
(Line 7 of Algorithm 3). Here Lmin > 0 is a parameter

used to prevent Linit from being too small. In practice, Lmin is often set to be a sufficiently small

value, e.g., Lmin = 10−6. The intuition behind such initialization can be understood as follows: As

shown in (3.7), L
(k−1)
t and L

(k)
t are the quadratic coefficients of the local quadratic approximations

of the objective function at β
(k−2)
t and β

(k−1)
t respectively. Intuitively speaking, β

(k−2)
t and β

(k−1)
t

are close to each other, which implies that L
(k−1)
t is a good guess for L

(k)
t . Hence we can initialize

the line-search method for L
(k)
t with a value slightly smaller than L

(k−1)
t , e.g., L

(k−1)
t /2.

When the stopping criterion ωλt
(
β

(k)
t

)
≤ εt is satisfied, the proximal-gradient method stops and

outputs the approximate local solution β̃t = β
(k)
t (Line 10 of Algorithm 3). We also keep track of

Lt = L
(k)
t to accelerate the line-search procedure within the next path following stage.

The reason we employ the line-search method instead of using a fixed L
(k)
t is that, the adaptive

line-search algorithm enables us to automatically exploit the strong convexity of φλt(β). In other

words, in §4 we will show that, as long as φλt(β) is strongly convex, the proximal-gradient method

within the t-th path following stage adapts to attain a fast geometric rate of convergence without

manually choosing a fixed L
(k)
t . Here geometric convergence means that we need at most C log(1/εt)

proximal-gradient steps to obtain an εt-suboptimal approximate local solution.
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4 Theoretical Results

We establish theoretical results on the iteration complexity and statistical performance of our

approximate regularization path following method for nonconvex learning problems.

4.1 Assumptions

We first list the required assumptions. The first assumption is about the relationship between λtgt

and ‖∇L(β∗)‖∞.

Assumption 4.1. For least squares loss and logistic loss, we set λtgt = C
√

log d/n. For semipara-

metric elliptical design loss, we set λtgt = C ′‖β∗‖1
√

log d/n. We assume

‖∇L(β∗)‖∞ ≤ λtgt/8. (4.1)

Assumption 4.1 is a common condition that λtgt should be large enough to dominate the noise.

For instance, for least squares loss we have

∇L(β∗) =
1

n
XT
(
Xβ∗ − y

)
,

where Xβ∗ − y is in fact the noise vector. In Lemma C.3 we will show that, for least squares loss

and logistic loss, we have that ‖∇L(β∗)‖∞ ≤ C
√

log d/n holds with high probability under certain

conditions. Similarly, in Lemma C.4 we will prove that, for semiparametric elliptical design loss,

‖∇L(β∗)‖∞ ≤ C ′‖β∗‖1
√

log d/n holds with high probability under certain conditions. Therefore,

our assumption about λtgt and ‖∇L(β∗)‖∞ holds with high probability.

In the sequel, we lay out another assumption on the sparse eigenvalues of ∇2L(β), which are

defined as follows.

Definition 4.2 (Sparse Eigenvalues). Let s be a positive integer. We define the largest and smallest

s-sparse eigenvalues of the Hessian matrix ∇2L(β) to be

ρ+

(
∇2L, s

)
= sup

{
vT∇2L(β)v : ‖v‖0 ≤ s, ‖v‖2 = 1, β ∈ Rd

}
,

ρ−
(
∇2L, s

)
= inf

{
vT∇2L(β)v : ‖v‖0 ≤ s, ‖v‖2 = 1, β ∈ Rd

}
.

For least squares loss and semiparametric elliptical design loss, ∇2L(β) does not depend on β.

However, for logistic loss we have

∇2L(β) =
1

n

n∑

i=1

xix
T
i ·

1

1 + exp(−xTi β)
· 1

1 + exp(xTi β)
, (4.2)

which depends on β. In Definition 4.2, the smallest s-sparse eigenvalue ρ−
(
∇2L, s

)
is obtained by

taking infimum over all β ∈ Rd. Consequently, for logistic loss, ρ−
(
∇2L, s

)
is always zero, because

in (4.2) we can take β such that |xTi β| → +∞ for all nonzero xi’s, which implies that ∇2L(β) goes

to an all-zero matrix. To avoid this degenerate case, for logistic loss we define the sparse eigenvalues

by taking infimum/supremum over all β with ‖β‖2 bounded instead of over all β ∈ Rd. To unify

the later analysis for different loss functions, we overload the definition of sparse eigenvalues for

logistic loss as follows.

17



Definition 4.3 (Sparse Eigenvalues for Logistic Loss). Let s be a positive integer. For logistic

loss, we define the largest and smallest s-sparse eigenvalues of ∇2L(β) to be

ρ+

(
∇2L, s

)
= sup

{
vT∇2L(β)v : ‖v‖0 ≤ s, ‖v‖2 = 1, ‖β‖2 ≤ R

}
,

ρ−
(
∇2L, s

)
= inf

{
vT∇2L(β)v : ‖v‖0 ≤ s, ‖v‖2 = 1, ‖β‖2 ≤ R

}
,

where R ∈ (0,+∞) is an absolute constant such that ‖β∗‖2 ≤ R.

Note that in Definition 4.3, we implicitly assume that ‖β∗‖2 is upper bounded by some known

absolute constant. Although it seems rather restrictive, this assumption is essential for logistic

loss. Otherwise, ∇2L(β∗) might go to an all-zero matrix when ‖β∗‖2 → +∞. When the curvature

of the objective function at β∗ is zero, a consistent estimation of β∗ is impossible. Although this

assumption is necessary for theoretical purposes, we require no prior knowledge about the exact

value of ‖β∗‖2 in practice, since we can always set R to be a sufficiently large constant in our

algorithm (Line 3 of Algorithm 1).

Recall that, as shown in Line 8 and Line 12 of Algorithm 1, we impose an `2 constraint of

radius R for all the proximal-gradient iterations at each path following stage. Therefore we have∥∥β(k)
t

∥∥
2
≤ R during the whole iterative procedure of our approximate path following method. Now

we are ready to present the sparse eigenvalue assumption on the Hessian matrix.

Assumption 4.4. Let s∗ = ‖β∗‖0, where β∗ is the true parameter vector. We assume there exists

an integer s̃ > Cs∗ such that

ρ+

(
∇2L, s∗ + 2s̃

)
< +∞, ρ−

(
∇2L, s∗ + 2s̃

)
> 0

are two absolute constants. The constant C > 0 is constant specified as follows.

In Assumption 4.4, the constant

C = 144κ2 + 250κ, (4.3)

where κ is a condition number defined as

κ =
ρ+

(
∇2L, s∗ + 2s̃

)
− ζ+

ρ−
(
∇2L, s∗ + 2s̃

)
− ζ−

∈ [1,+∞). (4.4)

Here recall that ζ+ ≥ 0 and ζ+ ≥ 0 are the two concavity parameters of the nonconvex penalty as

defined in regularity condition (a). To ensure that κ ∈ [1,+∞), it is necessary to choose

ζ− ≤ C ′ρ−
(
∇2L, s∗ + 2s̃

)
(4.5)

with constant C ′ < 1, which automatically implies

ζ+ ≤ C ′ρ+

(
∇2L, s∗ + 2s̃

)
, (4.6)

because regularity condition (a) implies ζ+ ≤ ζ−, and we have ρ−
(
∇2L, s∗+2s̃

)
≤ ρ+

(
∇2L, s∗+2s̃

)

by definition. Such a restriction on the concavity parameters suggests that the concave component

Qλ(β) =
∑d

j=1 qλ(βj) of the nonconvex penalty is not allowed to be arbitrarily concave.
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Assumption 4.4 is a standard condition in high-dimensional statistical theory, which is closely

related to the restricted isometry property (RIP) proposed by Candés and Tao (2005). Similar

conditions have been studied by Bickel et al. (2009); Raskutti et al. (2010); Negahban et al. (2012);

Zhang (2012); Xiao and Zhang (2012). More specifically, for least squares loss, the RIP condition

assumes that there exists an integer s and some constant δ ∈ (0, 1) such that

1− δ ≤ ρ−
(
∇2L, s

)
≤ ρ+

(
∇2L, s

)
≤ 1 + δ. (4.7)

In the following, we justify Assumption 4.4 for least squares loss with an example.

To illustrate that Assumption 4.4 is well defined, we assume that the RIP condition in (4.7) holds

with s = 877s∗ and δ = 0.01. We set the concavity parameters of the nonconvex penalty in (a) to be

ζ+ = 0 and ζ− = ρ−
(
∇2L, s

)
/20, e.g., for MCP defined in (2.2), we set b = 1/ζ− = 20/ρ−

(
∇2L, s

)
.

In the following, we verify that there exists an integer s̃ = 438s∗ that satisfies Assumption 4.4.

First, according to the RIP condition, we have

ρ+

(
∇2L, s∗+2s̃

)
= ρ+

(
∇2L, 877s∗

)
= ρ+

(
∇2L, s

)
≤ (1 + δ) = 1.01 < +∞, (4.8)

ρ−
(
∇2L, s∗+2s̃

)
= ρ−

(
∇2L, 877s∗

)
= ρ−

(
∇2L, s

)
≥ (1− δ) = 0.99 > 0. (4.9)

Second, we calculate the value of s̃ in detail. Since the condition number κ defined in (4.4) satisfies

1 ≤ κ =
ρ+

(
∇2L, s∗ + 2s̃

)
− ζ+

ρ−
(
∇2L, s∗ + 2s̃

)
− ζ−

=
ρ+

(
∇2L, s

)
− ζ+

ρ−
(
∇2L, s

)
− ζ−

=
20

19
· ρ+

(
∇2L, s

)

ρ−
(
∇2L, s

) ≤ 20

19
· 1 + δ

1− δ < 1.08.

We now verify that s̃ satisfies s̃ > Cs∗ in Assumption 4.4, where C is defined in (4.3). Plugging

the range 1 ≤ κ < 1.08 into the definition of C, we obtain C = 144κ2 + 250κ < 438. Therefore, as

long as the RIP condition holds with s = 877s∗ and δ = 0.01, we can find an integer s̃ = 438s∗ that

satisfies Assumption 4.4. For least squares loss, the RIP condition is known to hold for a variety

of design matrices with high probability, which implies that Assumption 4.4 also holds with high

probability for these designs.

It is worth noting that the constants in this example are rather large for practical purposes.

We could expect that these constants would be much smaller if we manage to get a small constant

C in (4.3). However, we mainly focus on providing novel theoretical insights in this paper, without

paying too much effort on optimizing constants.

Furthermore, we will justify Assumption 4.4 for L(β) being semiparametric elliptical design

loss and logistic loss in Appendix C.3. In Lemma 5.1 we will show that Assumption 4.4 actually

implies the strong convexity and smoothness of L̃λ(β) = L(β)+Qλ(β) for β on a sparse set, which

are essential for establishing the fast geometric rate of convergence of the proposed optimization

algorithm and achieving the desired statistical properties of the local solutions. Hereafter, we use

the shorthands

ρ+ = ρ+

(
∇2L, s∗ + 2s̃

)
, ρ− = ρ−

(
∇2L, s∗ + 2s̃

)
(4.10)

for notational simplicity.

4.2 Main Theorems

We first provide the main results about the computational rate of convergence. We then establish

the statistical properties of the local solutions obtained by our approximate path following method.
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4.2.1 Computational Theory

The next theorem shows that the proposed regularization path following method attains a global

geometric rate of convergence for calculating the full regularization path. Such a rate of convergence

is the fastest achievable rate among all first-order optimization methods.

Theorem 4.5 (Geometric Rate of Convergence). Under Assumption 4.1 and Assumption 4.4, we

have the following results:

1. Geometric Rate of Convergence within the t-th Stage: Within the t-th (t = 1, . . . , N)

path following stage (Line 8 and Line 12 of Algorithm 1), the iterative sequence
{
β

(k)
t

}∞
k=0

generated by the proximal-gradient method (Algorithm 3) converges to a unique local solution

β̂λt .

• Within the t-th stage (t = 1, . . . , N−1), the total number of proximal-gradient iterations

(Lines 5−9 of Algorithm 3) is no more than C ′ log
(
4C
√
s∗
)
.

• Within the N -th stage, the total number of proximal-gradient iterations (Lines 5−9 of

Algorithm 3) is no more than max
{

0, C ′ log
(
Cλtgt

√
s∗/εopt

)}
.

Here s∗ is the number of nonzero entries of the true parameter vector β∗,

C = 2
√

21 · √κ(1 + κ), C ′ = 2

/
log

(
1

1− 1/(8κ)

)
, (4.11)

where κ ∈ [1,+∞) is the condition number defined in (4.4).

2. Geometric Rate of Convergence over the Full Path: To compute the entire path, we

need no more than

(N − 1)C ′ log
(
4C
√
s∗
)

︸ ︷︷ ︸
1, . . . , (N − 1)−th Stages

+C ′ log

(
Cλtgt

√
s∗

εopt

)

︸ ︷︷ ︸
N−th Stage

(4.12)

proximal-gradient update iterations (Lines 5−9 of Algorithm 3), where C, C ′ are specified in

(4.11). Here εopt�λtgt/4 is the optimization precision of the final path following stage (Line

12 of Algorithm 1), and N = log(λ0/λtgt)/log(η−1) is the total number of approximate path

following stages, where η ∈ [0.9, 1) is an absolute constant.

3. Geometric Rate of Convergence of the Objective Function Values: Let β̃t be the

approximate local solution obtained within the t-th stage (Line 8 and Line 12 of Algorithm

1).

• For t = 0, . . . , N − 1, the value of the objective function decays exponentially towards

the value at the final exact local solution β̂λtgt , i.e.,

φλtgt
(
β̃t
)
−φλtgt

(
β̂λtgt

)
≤Cs∗ · η2(t+1), where C=

105λ2
0

ρ− − ζ−
. (4.13)
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• For t = N , we have

φλtgt
(
β̃N
)
−φλtgt

(
β̂λtgt

)
≤
(
C ′λtgts

∗) · εopt, where C ′=
21

ρ− − ζ−
. (4.14)

Here ρ− = ρ−
(
∇2L, s∗+2s̃

)
> 0 is the smallest sparse eigenvalue specified in Assumption 4.4;

As defined in regularity condition (a), ζ− > 0 is the concavity parameter of the nonconvex

penalty, which satisfies (4.5).

Proof. See the next section for a detailed proof.

Result 1 suggests that within each path following stage the proximal-gradient algorithm attains

a geometric rate of convergence. More specifically, within the t-th (t = 1, . . . , N) stage (Line 8 and

Line 12 of Algorithm 1), we only need a logarithmic number of proximal-gradient update iterations

(Lines 5−9 of Algorithm 3) to compute an approximate local solution β̃t. Furthermore, within

the t-th path following stage, the iterative sequence
{
β

(k)
t

}∞
k=0

produced by Algorithm 3 converges

towards a unique local solution β̂λt . In Theorem 4.8, we will show that β̂λt enjoys a more refined

statistical rate of convergence due to the usage of nonconvex penalty.

Result 2 suggests that our approximate path following method attains a global geometric rate

of convergence. From the perspective of high-dimensional statistics, the total number of stages

N scales with dimension d and sample size n, because N = log(λ0/λtgt)/log(η−1), where η is an

absolute constant. From the perspective of optimization, given dimension d and sample size n, when

the optimization precision εopt is sufficiently small such that in (4.12) the second term dominates

the first term, then the total iteration complexity is C log(1/εopt). In other words, we only need

to conduct a logarithmic number of proximal-gradient iterations (Lines 5−9 of Algorithm 3) to

compute the full regularization path.

Recall that we measure the suboptimality of an approximate solution with ωλ(β) defined in

(3.16), which does not directly reflect the optimality of the objective function value. Hence we

provide result 3 to characterize the decay of the objective gap φλtgt
(
β̃t
)
− φλtgt

(
β̂λtgt

)
. In detail,

(4.13) illustrates the exponential decay of the objective gap along the regularization path, i.e.,

t = 1, . . . , N − 1, while (4.14) suggests that, the final objective function value evaluated at β̃N
is close to the value at the exact local solution β̂λtgt , as long as the optimization precision εopt is

sufficiently small.

Remark 4.6. Nesterov (2007) showed that the total number of line-search steps (Lines 4−7 of

Algorithm 2) within the k-th proximal-gradient iteration (Line 8 of Algorithm 3) is no more than

2(k + 1) + max

{
0,

log(ρ+ − ζ+)− logLmin

log 2

}
,

where the sparse eigenvalue ρ+ = ρ+

(
∇2L, s∗+2s̃

)
> 0 is specified in Assumption 4.4; As defined in

regularity condition (a), ζ+ > 0 is the concavity parameter of the nonconvex penalty that satisfies

(4.6); Lmin is a parameter of Algorithm 3 (Line 3). Piecing the above results together, we conclude

that the total number of line-search iterations (Lines 4−7 of Algorithm 2) required to compute the

full regularization path is of the same order as (4.12).
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4.2.2 Statistical Theory

We present two types of statistical results. Recall that β̃t is the approximate local solution ob-

tained within the t-th path following stage, while β̂λt is the corresponding exact local solution

that satisfies the exact optimality condition in (3.14). In Theorem 4.7, we will provide a statistical

characterization of all the approximate local solutions
{
β̃t
}N
t=1

attained along the full regularization

path. Remind in Theorem 4.5 we prove that within the t-th stage, the iterative sequence
{
β

(k)
t

}∞
k=0

produced by the proximal-gradient method (Algorithm 3) converges towards a unique exact local

solution β̂λt . In Theorem 4.8, we will provide more refined statistical properties of these exact local

solutions
{
β̂λt
}N
t=1

along the full regularization path. Since β̂λN = β̂λtgt , this result justifies the

statistical property of the final estimator.

Theorem 4.7 (Statistical Rates of Convergence of Approximate Local Solutions). Let d be the

dimension of β and n be the sample size. Recall that β̃t is the approximate local solution obtained

within the t-th path following stage (Line 8 and Line 12 of Algorithm 1). Under Assumption 4.1

and Assumption 4.4, we have

∥∥β̃t − β∗
∥∥

2
≤ Cλt

√
s∗, for t = 1, . . . , N, (4.15)

where s∗ = ‖β∗‖0. Here N = log(λ0/λtgt)/log(η−1) is the total number of path following stages,

where η ∈ [0.9, 1) is a constant and λt = ηtλ0. In (4.15), the constant C = (21/8)/(ρ− − ζ−),

where ρ− = ρ−
(
∇2L, s∗ + 2s̃

)
> 0 is the smallest sparse eigenvalue specified in Assumption 4.4.

As defined in regularity condition (a), ζ− > 0 is the concavity parameter of the nonconvex penalty,

which satisfies (4.5).

Proof. See the next section for a detailed proof.

Theorem 4.7 provides statistical rates of convergence of all the approximate local solutions

attained by our algorithm along the regularization path. Recall that in Assumption 4.1, we set

λtgt = C
√

log d/n for least squares and logistic loss, and λtgt = C ′‖β∗‖1
√

log d/n for semipara-

metric elliptical design loss. For least squares and logistic loss, taking t = N in Theorem 4.7, we

have
∥∥β̃N − β∗

∥∥
2
≤ 21/8

ρ− − ζ−
λtgt

√
s∗ =

21/8 · C
ρ− − ζ−

√
s∗ log d

n
.

Hence, the final approximate local solution β̃N attains the minimax rate of convergence for param-

eter estimation. Similarly, for semiparametric elliptical design loss, we have

∥∥β̃N − β∗
∥∥

2
≤ 21/8 · C ′

ρ− − ζ−
‖β∗‖1

√
s∗ log d

n
,

which suggests that the rate of convergence of the final approximate solution is also optimal in the

regime where ‖β∗‖1 is upper bounded by a constant. Moreover, since η is an absolute constant, for

β̃N−K with K being a positive integer constant, Theorem 4.7 gives

∥∥β̃N−K − β∗
∥∥

2
≤ 21/8

ρ− − ζ−
λN−K

√
s∗ ≤ 21/8 · η−K

ρ− − ζ−
λtgt

√
s∗,
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which suggests that, the approximate local solution β̃N−K enjoys the same rate of convergence as

the final approximate local solution β̃N , but with a looser constant C = (21/8) · η−K/(ρ− − ζ−) >

(21/8)/(ρ− − ζ−).

In the next theorem, we provide a refined statistical rate of convergence. Remind that, within

the t-th path following stage, the iterative sequence
{
β

(k)
t

}∞
k=0

produced by the proximal-gradient

method (Algorithm 3) converges to a unique exact local solution β̂λt . The next theorem states

that β̂λt benefits from nonconvex penalty functions and possesses an improved statistical rate of

convergence.

Theorem 4.8 (Refined Statistical Rates of Convergence of Exact Local Solutions). For the regu-

larization parameter λt, we assume that the nonconvex penalty Pλt(β) =
∑d

j=1 pλt(βj) satisfies

p′λt(βj) = 0, for |βj | ≥ νt, (4.16)

for some νt > 0. Let S∗1 ∪ S∗2 = S∗ = supp(β∗) with |S∗1 | = s∗1, |S∗2 | = s∗2 and |S∗| = s∗ = s∗1 + s∗2.

For j ∈ S∗1 ⊆ S∗, we assume |β∗j | ≥ νt, while for j ∈ S∗2 ⊆ S∗, we assume |β∗j | < νt. Within the t-th

path following stage, let β̂λt be the unique local solution that
{
β

(k)
t

}∞
k=0

converges towards (as has

been shown in Theorem 4.5). Under Assumption 4.1 and Assumption 4.4, we have

∥∥β̂λt − β∗
∥∥

2
≤ C

∥∥(∇L(β∗)
)
S∗1

∥∥
2︸ ︷︷ ︸

S∗1 : Large |βj |′s

+ C ′λt
√
s∗2︸ ︷︷ ︸

S∗2 : Small |βj |′s

, for t = 1, . . . , N, (4.17)

where C = 1/(ρ− − ζ−) and C ′ = 3/(ρ− − ζ−).

Proof. See the next section for a detailed proof.

In Theorem 4.8, the assumption in (4.16) applies to a variety of nonconvex penalty functions.

For SCAD in (2.1), we have νt = aλt; While for MCP in (2.2), we have νt = bλt. Theorem 4.8

suggests that, for “small” coefficients such that |βj | < νt, the second part on the right-hand side of

(4.17) has the same recovery performance as in Theorem 4.7, while for “large” coefficients such that

|βj | ≥ νt, the first part in (4.17) possesses a more refined rate of convergence. To understand this,

we consider an example with L(β) being least squares loss. We assume that (Y |X = xi) follows a

sub-Gaussian distribution with mean xTi β
∗ and variance proxy σ2. Moreover, we assume that the

columns of X are normalized in such a way that maxj∈{1,...,d}
{
‖Xj‖2

}
≤ √n. Then we have

∥∥(∇L(β∗)
)
S∗1

∥∥
2
≤ Cσ

√
s∗1
n

(4.18)

with high probability. Clearly, such a
√
s∗1/n rate of convergence on the right-hand side of (4.18) is

significantly faster than the usual
√
s∗ log d/n rate, since it gets rid of the log d term, and s∗1 ≤ s∗.

In fact, νt is the minimum signal strength above which we are able to obtain such a refined rate

of convergence. In the examples of SCAD and MCP, we have νt = Cλt. Recall that {λt}Nt=0 is a

decreasing sequence. Hence, we are able to achieve this more refined rate of convergence for smaller

and smaller signal strength along the full regularization path. Moreover, for t = N , the minimum

signal strength νN = λN = λtgt = C
√

log d/n. Hence, the required minimum signal strength goes
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to zero as the sample size increases. Following a similar proof of Lemma C.3 and Lemma C.4 in

Appendix C, we can obtain similar results for logistic loss and semiparametric elliptical design loss.

This refined rate of convergence is sharper than the results in Loh and Wainwright (2013), in which

they didn’t sharply characterize the different conditions of S∗1 and S∗2 . Thus their obtained rate is

suboptimal compared to ours in the regime where all the nonzero coefficients of β∗ are relatively

large (i.e., the signal strength is strong).

Besides the refined rate of convergence for parameter estimation in Theorem 4.8, in the next

theorem we prove that, the exact local solution β̂λt also recovers the support of β∗ under suitable

conditions. Before we present the next theorem, we introduce the definition of an oracle estimator,

denoted by β̂O. Recall that S∗ = supp(β∗). The oracle estimator β̂O is defined as

β̂O = argmin
supp (β)⊆S∗

β∈Ω

L(β), (4.19)

where Ω = Rd for least squares loss and semiparametric elliptical design loss, while Ω = B2(R) for

logistic loss with R specified in Definition 4.3. In the next Lemma, we show that β̂O is the unique

global solution to the minimization problem in (4.19) even for nonconvex loss functions, and has

nice statistical recovery properties.

Lemma 4.9. Under Assumption 4.4, the oracle estimator β̂O is the unique global minimizer of

(4.19). If L(β) is least squares loss, we assume that (Y |X = xi) follows a sub-Gaussian distribution

with mean xTi β
∗ and variance proxy σ2, then the oracle estimator satisfies

∥∥β̂O − β∗
∥∥
∞ ≤ Cσ

√
2/ρ− ·

√
log s∗

n
(4.20)

with high probability for some constant C, where ρ− = ρ−
(
∇2L, s∗+ 2s̃

)
> 0 is the smallest sparse

eigenvalue specified in Assumption 4.4.

Proof. See Appendix C.12 for a detailed proof.

Statistical recovery results similar to (4.20) also hold for logistic loss and semiparametric ellipti-

cal design loss under different conditions. These results are omitted here for simplicity. Lemma 4.9

suggests that, for a sufficiently large n and suitable minimum signal strength, the oracle estimator

β̂O exactly recovers the support of β∗. More specifically, if the minimum signal strength satisfies

minj∈S∗ |β∗j | ≥ 2ν for some ν > 0, then we have

min
j∈S∗

∣∣(β̂O

)
j

∣∣ ≥ min
j∈S∗
|β∗j | −

∥∥β̂O − β∗
∥∥
∞ ≥ 2ν − σ

√
2/ρ− ·

√
log s∗

n
,

which implies that minj∈S∗
∣∣(β̂O

)
j

∣∣ ≥ ν > 0 for a sufficiently large n. Meanwhile, recall supp
(
β̂O

)
⊆

S∗. Therefore we have supp
(
β̂O

)
= S∗.

Remind that, within the t-th approximate path following stage, the sequence
{
β

(k)
t

}∞
k=0

pro-

duced by the proximal-gradient method (Algorithm 3) converges to a unique exact local solution

β̂λt . In the next theorem, we prove that under Assumption 4.1 and Assumption 4.4, β̂λt is the

oracle estimator, and exactly recovers the support of β∗ under suitable conditions.
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Theorem 4.10 (Support Recovery). For the regularization parameter λt, suppose that the noncon-

vex penalty Pλt(β) =
∑d

j=1 pλt(βj) satisfies (4.16) for some νt > 0. We assume the oracle estimator

β̂O defined in (4.19) satisfies minj∈S∗
∣∣(β̂O

)
j

∣∣ ≥ νt. Under Assumption 4.1 and Assumption 4.4, we

have β̂λt = β̂O, which implies supp
(
β̂λt
)

= supp
(
β̂O

)
= supp(β∗).

Proof. See the next section for a detailed proof.

Recall that the assumption in (4.16) applies to a variety of nonconvex penalties including SCAD

and MCP, for which we have νt = Cλt with C > 0. According to our discussion for Lemma 4.9, if

the minimum signal strength satisfies minj∈S∗ |β∗j | ≥ 2νt, then for a sufficiently large sample size

n, the oracle estimator β̂O satisfies minj∈S∗
∣∣(β̂O

)
j

∣∣ ≥ νt. In this situation, Theorem (4.10) holds,

i.e., the exact local solution β̂λt exactly recovers the support of β∗. Since νt = Cλt, the minimum

signal strength required for exact support recovery also shrinks with the decreasing sequence {λt}Nt=0

along the regularization path. In the examples of least squares and logistic loss, for t = N we have

νN = Cλtgt = C ′
√

log d/n. Therefore, for t = N the required minimum signal strength goes to

zero as sample size n goes to infinity.

5 Proof of Main Results

In this section we present the proof sketch of the main results. The desired computational and

statistical results rely on the strong convexity of the surrogate loss function L̃λ(β), e.g., we need

L̃λ(β) to be strongly convex to establish the geometric rate of convergence of the proximal-gradient

method within each path following stage. However, L̃λ(β) is nonconvex in general, since L̃λ(β) =

L(β) +Qλ(β), where L(β) is possibly nonconvex and Qλ(β) is concave. In the following lemma,

we prove that L̃λ(β) = L(β)+Qλ(β) is strongly convex for β on a sparse set. This property is also

referred to as restricted strongly convexity in the literature (Negahban et al., 2012; Xiao and Zhang,

2012; Zhang and Zhang, 2012). In a similar way, we establish the restricted strong smoothness of

L̃λ(β).

Lemma 5.1. Let β,β′ ∈ Rd be two sparse vectors that satisfy ‖(β − β′)S∗‖0 ≤ 2s̃, where s̃ is

specified in Assumption 4.4 and S∗ = supp(β∗). For L(β) being logistic loss, we further assume

‖β‖2 ≤ R and ‖β′‖2 ≤ R, where R is specified in Definition 4.3. Then the surrogate loss function

L̃λ(β) = L(β) +Qλ(β) satisfies the restricted strong convexity

L̃λ(β′) ≥ L̃λ(β) +∇L̃λ(β)T (β′ − β) +
ρ− − ζ−

2
‖β′ − β‖22,

and the restricted strong smoothness

L̃λ(β′) ≤ L̃λ(β) +∇L̃λ(β)T (β′ − β) +
ρ+ − ζ+

2
‖β′ − β‖22.

Here ρ− = ρ−
(
∇2L, s∗ + 2s̃

)
and ρ+ = ρ+

(
∇2L, s∗ + 2s̃

)
are the sparse eigenvalues specified in

Assumption 4.4. As defined in regularity condition (a), ζ−, ζ+ > 0 are the concavity parameters of

the nonconvex penalty, which satisfy (4.5) and (4.6).
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Proof. See §C.4 in Appendix C for a detailed proof.

A similar condition has been discussed by Negahban et al. (2012). The main difference is that,

our constraint set is a sparse subspace while that of Negahban et al. (2012) is a cone.

Note that in Lemma 5.1, the strong convexity and smoothness of L̃λ(β) rely on the sparsity of

β and β′. Hence, we need to establish results regarding the sparsity of β
(k)
t throughout the whole

iterative procedure. In the setting of logistic loss, we further need to provide an upper bound of∥∥β(k)
t

∥∥
2
. In the sequel, we provide several important lemmas regarding these required properties

of β
(k)
t . The first lemma provides a characterization of any sparse β with certain suboptimality.

Lemma 5.2. We assume that β satisfies

‖βS∗‖0 ≤ s̃, ωλ(β) ≤ λ/2 (5.1)

with λ ≥ λtgt, where ωλ(β) is the measure of suboptimality defined in (3.16). For logistic loss, we

further assume ‖β‖2 ≤ R, where R > 0 is a constant specified in Definition 4.3. Under Assumption

4.1 and Assumption 4.4, β has the following statistical recovery property,

‖β − β∗‖2 ≤ Cλ
√
s∗, where C =

21/8

ρ− − ζ−
.

Meanwhile, the objective function value evaluated at β satisfies

φλ(β)− φλ(β∗) ≤ C ′λ2s∗, where C ′ =
21/2

ρ− − ζ−
.

Proof. See §C.5 of Appendix C for a detailed proof.

Recall that in our approximate path following method, we use the approximate local solution

β̃t−1 obtained within the (t − 1)-th path following stage to be the initialization of the t-th stage

(Line 8 of Algorithm 1), i.e., β
(0)
t = β̃t−1. By setting β = β̃t−1 = β

(0)
t and λ = λt in Lemma 5.2,

we can see that, if β̃t−1 is sparse and (λt/2)-suboptimal, then the initial point β
(0)
t of the t-th stage

has nice statistical recovery performance. However, it remains unclear whether the rest of β
(k)
t ’s

(k = 1, 2, . . .) within the t-th stage also have similar recovery performance. To prove this, we first

present Lemma 5.3, which shows that under the condition that β is sparse and φλ(β) is close to

φλ(β∗), β has desired statistical properties. After Lemma 5.3, we will explain that if β
(0)
t satisfies

this condition, then all the β
(k)
t ’s (k = 1, 2, . . .) within the same path following stage also satisfy

this condition and thus enjoys nice statistical properties.

Lemma 5.3. Suppose that, for λ ≥ λtgt, β satisfies

‖βS∗‖0 ≤ s̃, φλ(β)− φλ(β∗) ≤ Cλ2s∗, where C =
21/2

ρ− − ζ−
.

For logistic loss, we further assume ‖β‖2 ≤ R, where R is a constant specified in Definition 4.3.

Under Assumption 4.1 and Assumption 4.4, we have

‖β − β∗‖2 ≤ C ′λ
√
s∗, where C ′ =

15/2

ρ− − ζ−
.
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Proof. See §C.6 of Appendix C for a detailed proof.

Let λ = λt and β = β
(k)
t in Lemma 5.3. It suggests that within the t-th path following stage,

all β
(k)
t ’s (k = 1, 2, . . .) have nice statistical recovery performance under three sufficient conditions:

(i) Each β
(k)
t is sparse; (ii) The objective function value φλt

(
β

(k)
t

)
is sufficiently close to φλt(β

∗);

(iii) For logistic loss, we further need ‖β(k)
t ‖2 ≤ R. For condition (ii), recall that if we set β = β

(0)
t

and λ = λt in Lemma 5.2, then β
(0)
t being sparse and (λt/2)-suboptimal implies that φλt

(
β

(0)
t

)
is

sufficiently close to φλt(β
∗). Since the proximal-gradient method ensures the monotone decrease of{

φλt
(
β

(k)
t

)}∞
k=0

within the t-th path following stage (see Lemma C.1 of Appendix C), we have that

condition (ii) holds. Meanwhile, condition (iii) obviously holds because of the `2 constraint. To

establish the statistical recovery performance of all the β
(k)
t ’s within the t-th stage, we further need

to establish the sparsity of β
(k)
t ’s to make sure condition (i) holds. To prove this, we present Lemma

5.4, which states that if β is sparse, then a proximal-gradient update operation on β defined in

(3.8) produces a sparse solution under certain conditions.

Lemma 5.4. Suppose that, for λ ≥ λtgt, β satisfies

‖βS∗‖0 ≤ s̃, φλ(β)− φλ(β∗) ≤ Cλ2s∗, and L < 2(ρ+ − ζ+), where C =
21/2

ρ− − ζ−
.

For logistic loss, we assume ‖β‖2 ≤ R, where R is specified in Definition 4.3. Under Assumption 4.1

and Assumption 4.4, the proximal-gradient update step defined in (3.8) produces a sparse solution,

i.e., ∥∥(TL,λ(β;R)
)
S∗
∥∥

0
≤ s̃.

Here we set R = +∞ if the domain Ω in (3.8) is Rd.

Proof. See §C.7 of Appendix C for a detailed proof.

Consider β = β
(k−1)
t , λ = λt and L = L

(k)
t , Lemma 5.4 states that, if β

(k−1)
t is sparse and the

objective function value φλt
(
β

(k−1)
t

)
is close to φλt(β

∗), then β
(k)
t = T

L
(k)
t ,λt

(
β

(k−1)
t ;R

)
produced

by the proximal-gradient update step (3.8) is also sparse. Within the t-th path following stage, if

β
(0)
t is sparse, ωλt

(
β

(0)
t

)
≤ λt/2, and for logistic loss

∥∥β(0)
t

∥∥
2
≤ R, then by Lemma 5.2 we have

φλt
(
β

(0)
t

)
− φλt(β∗) ≤

21/2

ρ− − ζ−
λ2
t s
∗.

Since
{
φλt
(
β

(k)
t

)}∞
k=0

decreases monotonically, we have

φλt
(
β

(k)
t

)
− φλt(β∗) ≤ φλt

(
β

(0)
t

)
− φλt(β∗) ≤

21/2

ρ− − ζ−
λ2
t s
∗, for k = 1, 2, . . . .

Assume that we have L
(k)
t ≤ 2(ρ+ − ζ+) (which will be proved in Theorem 5.5). Applying Lemma

5.4 recursively, we obtain
∥∥(β(k)

t

)
S∗
∥∥

0
≤ s̃ (k = 1, 2, . . .). Meanwhile, we have

∥∥β(k)
t

∥∥
2
≤ R due
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to the `2 constraint. Then according to Lemma 5.3, all β
(k)
t ’s within the path-following t-th stage

have nice recovery performance, i.e.,

∥∥β(k)
t − β∗

∥∥
2
≤ 15/2

ρ− − ζ−
λt
√
s∗, for k = 1, 2, . . . .

Furthermore, based on the sparsity of β
(k)
t , we obtain the restricted strong convexity and smooth-

ness of L̃λt(β) by Lemma 5.1, which enable us to establish the geometric rate of convergence within

the t-th path following stage. These results are presented in Theorem 5.5.

Theorem 5.5. We assume that, within the t-th path following stage, the proximal-gradient method

in Algorithm 3 is initialized by β
(0)
t and L

(0)
t , which satisfy

∥∥(β(0)
t

)
S∗
∥∥

0
≤ s̃, ωλt

(
β

(0)
t

)
≤ λt/2, and L

(0)
t ≤ 2(ρ+ − ζ+).

For logistic loss we further assume
∥∥β(0)

t

∥∥
2
≤ R with R specified in Definition 4.3. Then we have

∥∥(β(k)
t

)
S∗
∥∥

0
≤ s̃,

∥∥β(k)
t − β∗

∥∥
2
≤ 15/2

ρ− − ζ−
λt
√
s∗, and L

(k)
t ≤ 2(ρ+ − ζ+), for k = 1, 2, . . . . (5.2)

Moreover, the iterative sequence
{
β

(k)
t

}∞
k=0

converges towards a unique exact local solution β̂λt ,

which satisfies
∥∥(β̂λt

)
S∗
∥∥

0
≤ s̃ and the exact optimality condition that ωλt

(
β

(k)
t

)
≤ 0.

To achieve an approximate local solution β̃t such that ωλt
(
β̃t
)
≤ λt/4, we need no more than

C ′ log
(
4C
√
s∗
)

proximal-gradient iterations defined in Lines 5−9 of Algorithm 3. To achieve an

approximate local solution β̃t such that ωλt
(
β̃t
)
≤ εopt, we need no more than C ′ log

(
Cλt
√
s∗/εopt

)

proximal-gradient iterations. Here

C = 2
√

21 · √κ(1 + κ), C ′ = 2

/
log

(
1

1− 1/(8κ)

)
,

where κ is the condition number defined in (4.4). In other words, within the t-th path following

stage, the proximal-gradient method converges to β̂λt with a geometric rate of convergence.

Proof. See §C.8 of Appendix C for a detailed proof.

To prove that the geometric rate of convergence and desired statistical recovery properties hold

within all path following stages, i.e., t = 0, . . . , N , we need to verify that the conditions of Theorem

5.5 hold at each stage. We prove by induction. Suppose the initialization of (t−1)-th path following

stage satisfies

∥∥(β(0)
t−1

)
S∗
∥∥

0
≤ s̃, ωλ

(
β

(0)
t−1

)
≤ λt/2, and L

(0)
t−1 ≤ 2(ρ+ − ζ+). (5.3)

Applying Theorem 5.5, we obtain

∥∥(β(k)
t−1

)
S∗
∥∥

0
≤ s̃, L

(k)
t−1 ≤ 2(ρ+ − ζ+), for k = 1, 2, . . . .
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Consequently, the approximate solution β̃t−1 produced by the (t−1)-th stage satisfies
∥∥(β̃t−1

)
S∗
∥∥

0
≤

s̃, while Lt−1 satisfies Lt−1 ≤ 2(ρ+ − ζ+). Since we warm start the t-th path following stage with

β
(0)
t = β̃t−1 and L

(0)
t = Lt−1 (Line 8 of Algorithm 1), we have

∥∥(β(0)
t

)
S∗
∥∥

0
≤ s̃, L

(0)
t ≤ 2(ρ+ − ζ+). (5.4)

Moreover, note that the stopping criterion of the proximal-gradient method ensures ωλt−1

(
β̃t−1

)
≤

λt−1/4 (Line 9 of Algorithm 3). In Lemma C.8 of Appendix C we will prove this implies ωλt
(
β̃t−1

)
≤

λt/2. Consequently, we have

ωλt
(
β

(0)
t

)
≤ λt/2. (5.5)

Therefore, we know that (5.3) implies (5.4) and (5.5). We will verify (5.4) and (5.5) hold for t = 0

in the proof of Theorem 4.5 in Appendix C.9. By induction, we have that (5.4) and (5.5) hold for

t = 0, . . . , N . As a consequence of Theorem 5.5, all path following stages have geometric rates of

convergence along the solution path, which implies the global geometric rate of convergence. See

Appendix C.9 for a detail proof. Meanwhile, every β
(k)
t possesses desired statistical properties, i.e.,

∥∥β(k)
t − β∗

∥∥
2
≤ 15/2

ρ− − ζ−
λt
√
s∗, for t = 1, . . . , N and k = 0, 1, . . . ,

which further leads to the statistical rates of convergence of
{
β̃t
}N
t=1

in Theorem 4.7, the more re-

fined rates of convergence of
{
β̂λt
}N
t=1

in Theorem 4.8, and the support recovery results in Theorem

4.10. See §C.10−§C.12 of Appendix C for detailed proofs respectively.

6 Numerical Results

We provide numerical results illustrating the computational efficiency and statistical accuracy of

the proposed method. We consider two settings: (i) Semiparametric elliptical design regression

with the MCP penalty; (ii) Logistic regression with the MCP penalty. In the first setting, both

the loss and penalty functions are nonconvex, while in the second only the penalty function is

nonconvex.

In the first experiment, we consider L(β) being semiparametric elliptical random design loss

and Pλ(β) being the MCP penalty. The detailed settings are as follows:

• The design matrix X ∈ Rn×d contains n = 500 independent realizations of a random vector

X ∈ Rd with d = 2500, which follows a t-distribution with 5 degrees of freedom, zero mean

and correlation matrix Σ0
X . We set the correlation matrix Σ0

X to be (Σ0
X)i,j = 0.8|i−j| (1 ≤

i, j ≤ d). Meanwhile, in the i-th data sample the response yi follows a univariate t-distribution

with 5 degrees of freedom, mean xTi β
∗ and variance 0.01. Here xTi is the i-th row of the design

matrix X, and β∗ is the true parameter vector specified as follows.

• For the true parameter vector β∗ ∈ Rd, we set the first 100 coordinates of β∗ to be independent

realizations of a standard univariate Gaussian distribution (zero mean and unit variance), and

the other coordinates to be zero, i.e., we set s∗ = |supp(β∗)| = 100.
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Figure 3: Semiparametric elliptical design regression with MCP: (a) Plot of the objective function

value φλ
(
β

(k)
t

)
along the entire regularization path; (b) Zoom-in plot of φλ

(
β

(k)
N

)
(log-scale) within

the N -th path following stage; (c) Plot of the recovery error
∥∥β(k)

t − β∗
∥∥

2
. Here we illustrate each

path following stage (t = 1, . . . , N) with a different color. Note that each point in the figure denotes

β
(k)
t , which corresponds to the k-th iteration of the proximal-gradient method (Algorithm 3) within

the t-th path following stage.

• For the sequence of regularization parameters {λt}Nt=0, we set λtgt = 0.05 by cross-validation

and λ0 = ‖∇L(0)‖∞ =
∥∥K̂X,Y

∥∥
∞. Here K̂X,Y ∈ Rd is defined in (3.13). In our experiment,

we fix the random seed to be “2” in MATLAB. In this setting, we observe λ0 = 2.8516. We set

η = 0.9015 so that the total number of regularization parameters is N = log(λtgt/λ0)/ log η =

39.

• For the MCP penalty defined in (2.2), we set the tuning parameter to be b = 1.1. We set the

optimization precision within the N -th path following stage to be εopt = 10−6. Meanwhile,

we set Lmin = 10−6.

In Figure 3(a) we illustrate the convergence of the objective function value φλ
(
β

(k)
t

)
. In Figure

3(b) we zoom into the N -th path following stage and illustrate the geometric rate of conver-

gence. In Figure 3(c) we illustrate the statistical recovery performance of the iterative sequence{
β

(k)
t

}N
t=1

(k = 0, 1, . . .) attained by our path following method, i.e.,
∥∥β(k)

t − β∗
∥∥

2
.

In the second experiment, we consider the setting where L(β) is logistic loss and Pλ(β) is the

MCP penalty. The detailed settings are as follows:

• The design matrix X contains n = 50 independent realizations of a random vector X ∈ Rd
with d = 100, which follows a zero mean Gaussian distribution with covariance matrix 10 · I.

Here I ∈ Rd×d is the identity matrix. Corresponding to the i-th data sample, the response yi ∈
{0, 1} follows a Bernoulli distribution that satisfies P(Y = 0 |X = xi) =

(
1 + exp(xTi β

∗)
)−1

.

Here xTi is the i-th row of the design matrix X, and β∗ is the true parameter vector specified

as follows. We set the radius R of the constraint set Ω = B2(R) in (3.8) to be 103 (Line 3 of

Algorithm 1).

• For the true parameter vector β∗ ∈ Rd, we set the first 3 coordinates of β∗ to be 20, and the

other coordinates to be zero, i.e., we set s∗ = |supp(β∗)| = 3.
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• For the regularization parameters, we set λtgt = 0.12 by cross-validation and λ0 = ‖∇L(0)‖∞.

In our experiment, we fix the random seed to be “2” in MATLAB. We observe that λ0 = 1.2.

Correspondingly, we set η = 0.9035 so that the total number of regularization parameters

along the regularization path is N = log(λtgt/λ0)/ log η = 22.

• For the MCP penalty defined in (2.2), we set the tuning parameter to be b = 2. We set the

optimization precision within the N -th path following stage to be εopt = 10−6. Meanwhile,

we set Lmin = 10−6.

Similar to Figure 3, in Figure 4 we illustrate the convergence of the objective function value, as

well as the statistical recovery performance of the iterative sequence
{
β

(k)
t

}N
t=1

(k = 0, 1, . . .) that

is attained by our path following method.
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Figure 4: Logistic regression with MCP: (a) Plot of the objective function value φλ
(
β

(k)
t

)
along the

entire regularization path; (b) Zoom-in plot of φλ
(
β

(k)
N

)
(log-scale) within the N -th path following

stage; (c) Plot of the recovery error
∥∥β(k)

t − β∗
∥∥

2
.

7 Conclusion

In this paper, we provided an integrated theory for penalized M -estimators with possibly noncon-

vex loss or penalty functions. These problems are motivated by generalized linear models with

nonconvex penalties and semiparametric elliptical design regression, as well as a broad range of

other applications. Since it is intractable to compute the global solutions of these problems due to

the nonconvex formulation, we need to establish a theory that characterizes both the computational

and statistical properties of the local solutions obtained by specific algorithms. For this purpose, we

proposed an approximate regularization path following method which serves as a unified framework

for solving a variety of high-dimensional sparse learning problems with nonconvexity. Computa-

tionally, our method enjoys a fast global geometric rate of convergence for calculating the entire

regularization path; Statistically, all the approximate and exact local solutions along the regular-

ization path attained by our method enjoy sharp statistical rate of convergence in both estimation

and support recovery. In particular, we provide a sharp theoretical analysis that demonstrates

the advantage of using nonconvex penalties. This paper demonstrates that under suitable condi-
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tions, the entire regularization path of a broad class of nonconvex sparse learning problems can be

efficiently obtained.
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A Illustration of Regularity Condition (e) for Nonconvex Penalty
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Figure 5: An illustration of regularity condition (e) for MCP and SCAD: (a) Plots of q′λ1(βj) and

q′λ2(βj) for MCP with λ1 = 1, λ2 = 2 and b = 2; (b) Plots of q′λ1(βj) and q′λ2(βj) for SCAD

with λ1 = 1, λ2 = 2.5 and a = 2.1; (c) Plots of q′λ1(βj) and q′λ2(βj) for SCAD with λ1 = 1,

λ2 = 1.5 and a = 2.1. Subfigure (a) shows that regularity condition (e) holds for MCP. For SCAD,

we consider two cases: λ2 ≥ aλ1, as illustrated in (b); λ2 < aλ1 as illustrated in (c). In the

first case, |AD| = λ1 ≤ (a − 1)λ1 ≤ |λ1 − λ2| since a > 2 and λ2 ≥ aλ1. In the second case,

|B′E| = (λ2 − λ1)/(a− 1) ≤ |λ1 − λ2|, because the slope of EC ′ is (−1/(a− 1)) with a > 2.
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B Derivation of Optimization Update Schemes

To simplify the notation, we denote L
(k)
t by L, β

(k−1)
t by β′, and λt by λ in the rest of this section.

Derivation of (3.10): If Ω = Rd, then we have

TL,λ(β′; +∞) = argmin
β∈Rd

{
ψL,λ(β;β′)

}

= argmin
β∈Rd

{
L̃λ(β′) +∇L̃λ(β′)T (β − β′) +

L

2
‖β − β′‖22 + λ‖β‖1

}

= argmin
β∈Rd

{
1

2

∥∥∥∥β −
(
β′ − 1

L
∇L̃λ(β′)

)

︸ ︷︷ ︸
β̄

∥∥∥∥
2

2

+
λ

L
‖β‖1

}
. (B.1)

It is known that the minimizer of (B.1) can be obtained by soft-thresholding β̄ with the threshold

of λ/L, i.e.,

(
TL,λ(β′; +∞)

)
j

=

{
0 if |β̄j | ≤ λ/L,
sign(β̄j)(|β̄j | − λ/L) if |β̄j | > λ/L.

(B.2)

Therefore we obtain the first update scheme (3.10) for Ω = Rd.
Derivation of (3.12): If Ω = B2(R) =

{
β : ‖β‖22 ≤ R2

}
, by Lagrangian duality we can trans-

form the original optimization problem with constraint into an unconstraint optimization problem.

Hence, there exists a Lagrangian multiplier τ ≥ 0 such that

TL,λ(β′;R) = argmin
β∈B2(R)

{
ψL,λ(β;β′)

}
= argmin

β∈Rd

{
ψL,λ(β;β′) +

τ

2
‖β‖22

}
.

Consequently, based on (B.1) we have

TL,λ(β′;R) = argmin
β∈Rd

{
L̃λ(β′) +∇L̃λ(β′)T (β − β′) +

L

2
‖β − β′‖22 + λ‖β‖1 +

τ

2
‖β‖22

}

= argmin
β∈Rd

{
L+ τ

2
‖β‖22 −

(
L · β′ −∇L̃λ(β′)

)T
β + λ‖β‖1

}

= argmin
β∈Rd

{
1

2

∥∥∥∥∥β −
(

L

L+ τ
β′ − 1

L+ τ
∇L̃λ(β′)

)

︸ ︷︷ ︸
L

L+ τ
β̄

∥∥∥∥∥

2

2

+
λ

L+ τ
‖β‖1

}
, (B.3)

where β̄ = β′−∇L̃λ(β′)/L. The minimizer of (B.3) can also be obtained by soft-thresholding, i.e.,

(
TL,λ(β′;R)

)
j

=





0 if
L

L+ τ
|β̄j | ≤

λ

L+ τ
,

sign

(
L

L+ τ
β̄j

)(
L

L+ τ
|β̄j | −

λ

L+ τ

)
if

L

L+ τ
|β̄j | >

λ

L+ τ
.

(B.4)
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Comparing (B.4) with (B.2), we have

TL,λ(β′;R) =
L

L+ τ
TL,λ(β′; +∞). (B.5)

In other words, we can obtain the constraint solution TL,λ(β′;R) by first calculating the unconstraint

solution TL,λ(β′; +∞), and then rescaling it by a factor of L/(L+τ). Note that here the Lagrangian

multiplier τ is unknown. We discuss the following two cases:

• If the constraint β ∈ B2(R) is not active, then we have τ = 0 by complementary slackness,

which implies

TL,λ(β′;R) = TL,λ(β′; +∞).

Since the constraint is not active, we have

‖TL,λ(β′;R)‖2 = ‖TL,λ(β′; +∞)‖2 < R.

• If the constraint β ∈ B2(R) is active, then we have τ ≥ 0 by complementary slackness. In

this case, the minimizer TL,λ(β′;R) lies on the boundary of B2(R). By (B.5) we have

‖TL,λ(β′; +∞)‖2 =
L+ τ

L
‖TL,λ(β′;R)‖2 =

L+ τ

L
R ≥ R.

To obtain TL,λ(β′;R), we project TL,λ(β′; +∞) onto B2(R), which can be achieved by

TL,λ(β′;R) =
R · TL,λ(β′; +∞)

‖TL,λ(β′; +∞)‖2
.

Therefore we obtain the second update scheme (3.12) for Ω = B2(R).

C Proof of Theoretical Results

To analyze the computational properties of our approximate regularization path following method,

we first provide several useful lemmas about Nesterov’s proximal-gradient method used within each

stage of the path following method.

C.1 Preliminary Results about the Proximal-Gradient Method

Recall that the objective function can be formulated as φλt(β) = L̃λt(β) + λt‖β‖1 where L̃λt(β) =

L(β) +Qλt(β), while ψ
L
(k)
t ,λt

(
β;β

(k−1)
t

)
is the local quadratic approximation of φλt(β) at β

(k−1)
t

defined in (3.7). The following lemma, which adapts from Nesterov (2007), characterizes the decre-

ment of the objective function.

Lemma C.1. Under Assumption 4.4, we assume
∥∥(β(k−1)

t

)
S∗
∥∥

0
≤ s̃, where s̃ is the positive integer

specified in Assumption 4.4. For any L
(k)
t > 0 and fixed λt ∈ [λtgt, λ0], we have

φλ
(
β

(k)
t

)
≤ φλ

(
β

(k−1)
t

)
− L

(k)
t

2

∥∥β(k)
t − β

(k−1)
t

∥∥2

2
.

34



Recall that as defined in (3.16), ωλ(β) describes the suboptimality of approximate solutions. The

following lemma, which follows from Nesterov (2007), upper bounds ωλt
(
β

(k)
t

)
with

∥∥β(k)
t −β

(k−1)
t

∥∥
2
.

Lemma C.2. Under the assumptions of Lemma C.1, then we have

ωλt
(
β

(k)
t

)
≤
(
L

(k)
t + ρ+ − ζ−

)∥∥β(k)
t − β

(k−1)
t

∥∥
2
,

where ρ+ = ρ+

(
∇2L, s∗ + 2s̃

)
is the sparse eigenvalue specified in Assumption 4.4; As defined in

regularity condition (a), ζ+ > 0 is the concavity parameter of the nonconvex penalty, which satisfies

(4.6).

C.2 Upper Bounds of ‖∇L(β∗)‖∞
In this section, we provide upper bounds of ‖∇L(β∗)‖∞ to justify Assumption 4.1.

Lemma C.3. For least squares regression with sub-Gaussian noise and logistic regression, we

assume that the columns of X are normalized in such a way that maxj∈{1,...,d}
{
‖Xj‖2

}
≤ √n.

Then we have

‖∇L(β∗)‖∞ ≤ C
√

log d

n
(C.1)

with probability at least 1− d−1, where C is a constant.

Proof. See Candés and Tao (2007); Zhang and Huang (2008); Zhang (2009); Bickel et al. (2009);

Koltchinskii (2009a); van de Geer and Bühlmann (2009); Negahban et al. (2012); Wainwright (2009)

for a detailed proof.

Lemma C.4. For semiparametric elliptical design regression, we have, with probability at least

1− (d+ 1)−5/2 − 2(d+ 1)−3,

‖∇L(β∗)‖∞ ≤ C‖β∗‖1
√

log d

n
, (C.2)

where C is a constant.

Proof. See §D.3 of Appendix D for a detailed proof.

C.3 Justification of Assumption 4.4

In this section, we show that Assumption 4.4 holds with high probability for semiparametric ellip-

tical design loss and logistic loss.

First we provide two lemmas regarding the largest and smallest sparse eigenvalues of the Hessian

matrix ∇2L(β) of semiparametric elliptical design loss and logistic loss. Then we will use them to

justify Assumption 4.4.
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Lemma C.5. Let n be the sample size, d be the dimension of β, and Z ∈ Rd+1 be an elliptically

distributed random vector defined in §2.2. The corresponding covariance matrix estimator K̂Z ∈
R(d+1)×(d+1) is defined in (2.7), while its submatrix K̂X ∈ Rd×d is defined in (3.13). The Hessian

matrix of semiparametric elliptical design loss is ∇2L(β) = K̂X . Let s be a positive integer that

indicates the sparsity level. Under suitable conditions (see Han and Liu (2013) for details), for a

sufficiently large n, there exists an s such that ρ−
(
∇2L, s

)
> 0 and ρ+

(
∇2L, s

)
< +∞, both with

probability at least 1−2d−1−3d−2. Here ρ+

(
∇2L, s

)
and ρ−

(
∇2L, s

)
are defined in Definition 4.2.

Proof. See §D.2 in Appendix D for a detailed proof.

In the following we provide a similar lemma for logistic loss. RIP-like conditions for logistic loss

have been widely studied (van de Geer, 2008; Negahban et al., 2012; Loh and Wainwright, 2013).

To simplify the analysis, we utilize a result from Loh and Wainwright (2013) to prove the following

lemma.

Lemma C.6. Let n be the sample size, d be the dimension. Suppose X = (x1, . . . ,xn)T ∈ Rn×d
is a sub-Gaussian design matrix, where x1, . . . ,xn are independent realizations of a sub-Gaussian

random vector with zero mean, unit variance proxy and independent entries. For logistic loss, the

Hessian matrix is defined in (4.2). Let s be a positive integer that indicates the sparsity level, and R

be a positive constant. For a sufficiently large n, there exists an integer s such that ρ−
(
∇2L, s

)
> 0

and ρ+

(
∇2L, s

)
< +∞, both with probability at least 1 − C exp(−C ′n), where C,C ′ > 0. Here

ρ−
(
∇2L, s

)
and ρ+

(
∇2L, s

)
are defined in Definition 4.3.

Proof. For logistic loss, Loh and Wainwright (2013, Proposition 1) showed that, for β,β′ ∈ Rd such

that ‖β‖2 ≤ R and ‖β′‖2 ≤ R, we have

L(β′)− L(β)−∇L(β)T (β′ − β) ≤ C‖β − β′‖22 +
2C

3
· log d

n
‖β − β′‖21, (C.3)

L(β′)− L(β)−∇L(β)T (β′ − β) ≥ C ′‖β − β′‖22 − C ′′ ·
log d

n
‖β − β′‖21, (C.4)

both with probability at least 1 − C ′′′ exp(−C ′′′′n). All these constants are positive. By Taylor’s

theorem and the mean value theorem, we have

L(β′) = L(β) +∇L(β)T (β′ − β) +
1

2
(β′ − β)T∇2L

(
γβ′ + (1− γ)β

)
(β′ − β),

where γ ∈ [0, 1]. Plugging this into the left-hand sides of (C.3) and (C.4), we obtain

1

2
(β′ − β)T∇2L

(
γβ′ + (1− γ)β

)
(β′ − β) ≤ C‖β′ − β‖22 +

2C

3
· log d

n
‖β′ − β‖21, (C.5)

1

2
(β′ − β)T∇2L

(
γβ′ + (1− γ)β

)
(β′ − β) ≥ C ′‖β′ − β‖22 − C ′′ ·

log d

n
‖β′ − β‖21. (C.6)

Assume that β and β′ satisfy ‖β′ − β‖0 ≤ s, which implies ‖β′ − β‖1 ≤
√
s · ‖β′ − β‖2. Plugging

this upper bound of ‖β′ − β‖1 into the right-hand sides of (C.5) and (C.6), we have

1

2
(β′ − β)T∇2L

(
γβ′ + (1− γ)β

)
(β′ − β) ≤

(
C +

2C

3
· s log d

n

)
· ‖β′ − β‖22, (C.7)

1

2
(β′ − β)T∇2L

(
γβ′ + (1− γ)β

)
(β′ − β) ≥

(
C ′ − C ′′ · s log d

n

)
· ‖β′ − β‖22. (C.8)
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In (C.7) and (C.8), taking n ≥ C ′′′ ·s log d/n with a sufficiently large C ′′′ > 0, and dividing ‖β′−β‖22
on both sides, we obtain

C ′

2
≤ 1

2
· (β′ − β)T

‖β′ − β‖2
· ∇2L

(
γβ′ + (1− γ)β

)
· (β′ − β)

‖β′ − β‖2
≤ 2C. (C.9)

Let v = (β′−β)/‖β′−β‖2. Obviously, v is an arbitrary vector that satisfies ‖v‖2 = 1 and ‖v‖0 ≤ s.
Taking β′ → β, we have C ′ ≤ vT∇2L(β)v ≤ 4C for any β ≤ R and any v such that ‖v‖2 = 1

and ‖v‖0 ≤ s. By Definition 4.3 of ρ−
(
∇2L, s

)
and ρ+

(
∇2L, s

)
, we have ρ−

(
∇2L, s

)
≥ C ′ > 0 and

ρ+

(
∇2L, s

)
≤ 4C < +∞. Thus we conclude the proof.

Equipped with Lemma C.5 and Lemma C.6, we are ready to justify Assumption 4.4 for semi-

parametric elliptical design loss and logistic loss. Recall that s∗ = ‖β∗‖0, where β∗ is the true pa-

rameter vector. We assume that Lemma C.5 or Lemma C.6 holds with s = Cs∗, ρ+

(
∇2L, s

)
= C ′

and ρ−
(
∇2L, s

)
= C ′′, where C satisfies

C ≥ 2

(
144 ·

(
2C ′

C ′′

)2

+ 250 ·
(

2C ′

C ′′

))
+ 1. (C.10)

Meanwhile, we set the concavity parameter of the nonconvex penalty to be ζ+ = 0 and ζ− = C ′′/2.

Now we verify that there exists an integer s̃ = (C− 1)/2 · s∗, where C satisfies (C.10), that satisfies

Assumption 4.4. Note that the condition number κ defined in (4.4) is

κ =
ρ+

(
∇2L, s∗ + 2s̃

)
− ζ+

ρ−
(
∇2L, s∗ + 2s̃

)
− ζ−

=
ρ+

(
∇2L, Cs∗

)
− ζ+

ρ−
(
∇2L, Cs∗

)
− ζ−

=
ρ+

(
∇2L, s

)
− ζ+

ρ−
(
∇2L, s

)
− ζ−

=
C ′

C ′′ − C ′′/2 =
2C ′

C ′′
.

Since s̃ = (C − 1)/2 · s∗ where C satisfies (C.10), we have

s̃ ≥
(

144 ·
(

2C ′

C ′′

)2

+ 250 ·
(

2C ′

C ′′

))
· s∗ = (144κ2 + 250κ) · s∗.

Hence we find an s̃ that satisfies the requirements in Assumption 4.4.

C.4 Proof of Lemma 5.1

Proof. Recall that Qλ(β) is the concave component of the nonconvex penalty Pλ(β), which implies

−Qλ(β) is convex. Meanwhile, recall that Qλ(β) =
∑d

j=1 qλ(βj), where qλ(βj) satisfies regularity

condition (a). Hence we have

−ζ−(β′j − βj)2 ≤
(
q′λ(β′j)− q′λ(βj)

)
(β′j − βj) ≤ −ζ+(β′j − βj)2,

which implies the convex function −Qλ(β) satisfies

(
∇
(
−Qλ(β′)

)
−∇

(
−Qλ(β)

))T
(β′ − β) ≤ ζ−‖β′ − β‖22, (C.11)

(
∇
(
−Qλ(β′)

)
−∇

(
−Qλ(β)

))T
(β′ − β) ≥ ζ+‖β′ − β‖22. (C.12)
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According to Nesterov (2004, Theorem 2.1.5 & Theorem 2.1.9), (C.11) and (C.12) are equivalent

definitions of strong smoothness and strong convexity respectively. In other words, −Qλ(β) satisfies

−Qλ(β′) ≤ −Qλ(β)−∇Q(β)T (β′ − β) +
ζ−
2
‖β′ − β‖22, (C.13)

−Qλ(β′) ≥ −Qλ(β)−∇Q(β)T (β′ − β) +
ζ+

2
‖β′ − β‖22. (C.14)

For loss function L(β), by Taylor’s theorem and the mean value theorem, we have

L(β′) = L(β) +∇L(β)T (β′ − β) +
1

2
(β′ − β)T∇2L

(
γβ + (1− γ)β′

)
(β′ − β), (C.15)

where γ ∈ [0, 1]. Note that we assume ‖(β′ − β)S∗‖0 ≤ 2s̃, which implies ‖β′ − β‖0 ≤ s∗ + 2s̃. For

logistic loss, we assume ‖β‖2 ≤ R and ‖β′‖2 ≤ R, which implies ‖γβ + (1 − γ)β′‖2 ≤ R by the

convexity of `2 norm. By Definition 4.2 and Definition 4.3, we have

ρ−
(
∇2L, s∗ + 2s̃

)
≤ (β′ − β)T

‖β′ − β‖2
∇2L

(
γβ + (1− γ)β′

) (β′ − β)

‖β′ − β‖2
≤ ρ+

(
∇2L, s∗ + 2s̃

)
.

Plugging this into the right-hand side of (C.15), we have

L(β′) ≥ L(β) +∇L(β)T (β′ − β) +
ρ−
(
∇2L, s∗ + 2s̃

)

2
‖β′ − β‖22, (C.16)

L(β′) ≤ L(β) +∇L(β)T (β′ − β) +
ρ+

(
∇2L, s∗ + 2s̃

)

2
‖β′ − β‖22. (C.17)

Recall that L̃λ(β) = L(β) +Qλ(β). Subtracting (C.13) from (C.16), and (C.14) from (C.17), we

obtain

L̃λ(β′) ≥ L̃λ(β) +∇L̃λ(β)T (β′ − β) +
ρ−
(
∇2L, s∗ + 2s̃

)
− ζ−

2
‖β′ − β‖22

L̃λ(β′) ≤ L̃λ(β) +∇L̃λ(β)T (β′ − β) +
ρ+

(
∇2L, s∗ + 2s̃

)
− ζ+

2
‖β′ − β‖22.

Then we conclude the proof.

C.5 Proof of Lemma 5.2

Proof. Results for Statistical Recovery: Since ‖βS∗‖0 ≤ s̃ and ‖β∗
S∗
‖0 = 0, we have ‖(β −

β∗)S∗‖ ≤ s̃. For logistic loss, we further have ‖β‖2 ≤ R and ‖β∗‖2 ≤ R, where R is specified in

Definition 4.3. Thus Lemma 5.1 gives

L̃λ(β∗) ≥ L̃λ(β) + (β∗ − β)T∇L̃λ(β) +
ρ− − ζ−

2
‖β∗ − β‖22, (C.18)

L̃λ(β) ≥ L̃λ(β∗) + (β − β∗)T∇L̃λ(β∗) +
ρ− − ζ−

2
‖β∗ − β‖22. (C.19)

Adding (C.18) and (C.19) and moving (β∗ − β)T∇L̃λ(β) to the left-hand side, we obtain

(β − β∗)T∇L̃λ(β) ≥ (β − β∗)T∇L̃λ(β∗) + (ρ− − ζ−)‖β∗ − β‖22. (C.20)
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Let ξ ∈ ∂‖β‖1 be the subgradient that attains the minimum in

ωλ(β) = min
ξ′∈∂‖β‖1

max
β′∈Ω

{
(β − β′)T
‖β − β′‖1

(
∇L̃λ(β) + λξ′

)}
.

Then we have

ωλ(β) = max
β′∈Ω

{
(β − β′)T
‖β − β′‖1

(
∇L̃λ(β) + λξ

)}
. (C.21)

Adding λ(β − β∗)T ξ to the both sides of (C.20), we obtain

(β − β∗)T
(
∇L̃λ(β) + λξ

)
≥ (β − β∗)T∇L̃λ(β∗) + (ρ− − ζ−)‖β∗ − β‖22 + λ(β − β∗)T ξ.

Since β∗ ∈ Ω, by (C.21) we have

(β − β∗)T
‖β − β∗‖1

(
∇L̃λ(β) + λξ

)
≤ max
β′∈Ω

{
(β − β′)T
‖β − β′‖1

(
∇L̃λ(β) + λξ

)}
= ωλ(β). (C.22)

Recall that we assume ωλ(β) ≤ λ/2, we obtain

(β − β∗)T
(
∇L̃λ(β) + λξ

)
≤ λ/2 · ‖β − β∗‖1. (C.23)

Plugging (C.23) into the left-hand side of (C.20), we obtain

λ/2 · ‖β − β∗‖1 ≥ (β − β∗)T∇L̃λ(β∗)︸ ︷︷ ︸
(i)

+(ρ− − ζ−)‖β∗ − β‖22 + λ(β − β∗)T ξ︸ ︷︷ ︸
(ii)

. (C.24)

Now we provide lower bounds of terms (i) and (ii) in (C.24) respectively.

• Bounding Term (i) in (C.24): Recall that L̃λ(β) = L(β) +Qλ(β). We have

(β − β∗)T∇L̃λ(β∗) = (β − β∗)T∇L(β∗)︸ ︷︷ ︸
(i).a

+ (β − β∗)T∇Qλ(β∗)︸ ︷︷ ︸
(i).b

. (C.25)

Separating the support of β − β∗ into S∗ and S∗, we obtain

‖β − β∗‖1 = ‖(β − β∗)S∗‖1 + ‖(β − β∗)S∗‖1.

Then for term (i).a in (C.25), we have

(β − β∗)T∇L(β∗) ≥ −‖β − β∗‖1‖∇L(β∗)‖∞
= −‖(β − β∗)S∗‖1‖∇L(β∗)‖∞ − ‖(β − β∗)S∗‖1‖∇L(β∗)‖∞.(C.26)

For term (i).b in (C.25), we have

(β − β∗)T∇Qλ(β∗) = (β − β∗)TS∗
(
∇Qλ(β∗)

)
S∗ + (β − β∗)T

S∗
(
∇Qλ(β∗)

)
S∗ . (C.27)
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Note that Qλ(β∗) is separable. We have

(β − β∗)TS∗
(
∇Qλ(β∗)

)
S∗ =

∑

j∈S∗
(βj − β∗j ) · q′λ(β∗j ) = (β − β∗)TS∗∇Qλ(β∗), (C.28)

(β − β∗)T
S∗
(
∇Qλ(β∗)

)
S∗ =

∑

j∈S∗
(βj − β∗j ) · q′λ(β∗j ) =

∑

j∈S∗
(βj − β∗j ) · q′λ(0) = 0, (C.29)

where the second equation in (C.29) is because β∗j = 0 for j ∈ S∗, and the third is by regularity

condition (c) that q′λ(0) = 0. Plugging (C.28) and (C.29) into the right-hand side of (C.27),

for term (i).b in (C.25) we obtain

(β − β∗)T∇Qλ(β∗) = (β − β∗)TS∗∇Qλ(β∗) ≥ −‖(β − β∗)S∗‖1‖∇Qλ(β∗)‖∞. (C.30)

Plugging (C.26) and (C.30) into the right-hand side of (C.25), then for term (i) in (C.24) we

obtain

(β − β∗)T∇L̃λ(β∗) (C.31)

≥ −‖(β − β∗)S∗‖1‖∇L(β∗)‖∞ − ‖(β − β∗)S∗‖1‖∇L(β∗)‖∞ − ‖(β − β∗)S∗‖1‖∇Qλ(β∗)‖∞.

• Bounding Term (ii) in (C.24): For term (ii) in (C.24), by separating the support of β−β∗
into S∗ and S∗ we have

λ(β − β∗)T ξ = λ (β − β∗)TS∗ξS∗︸ ︷︷ ︸
(ii).a

+λ (β − β∗)T
S∗ξS∗︸ ︷︷ ︸

(ii).b

. (C.32)

For term (ii).a in (C.32), since ξ ∈ ∂‖β‖1, we have ‖ξS∗‖∞ ≤ ‖ξ‖∞ ≤ 1, which implies

(β − β∗)TS∗ξS∗ ≥ −‖ξS∗‖∞‖(β − β∗)S∗‖1 ≥ −‖(β − β∗)S∗‖1. (C.33)

For term (ii).b in (C.32), since β∗
S∗

= 0, we have (β − β∗)S∗ = βS∗ . Recall that ξ ∈ ∂‖β‖1.

For βj 6= 0, since ξj = sign(βj), we have βjξj = |βj |. For βj = 0, we have βjξj = |βj | = 0.

Therefore, we obtain

(β − β∗)T
S∗ξS∗ = βT

S∗ξS∗ =
∑

j∈S∗
βjξj =

∑

j∈S∗
|βj | = ‖βS∗‖1 = ‖(β − β∗)S∗‖1. (C.34)

Plugging (C.33) and (C.34) into the right-hand side of (C.32), we obtain

λ(β − β∗)T ξ ≥ −λ‖(β − β∗)S∗‖1 + λ‖(β − β∗)S∗‖1. (C.35)

Plugging (C.31) and (C.35) into the right-hand side of (C.24), we obtain

λ/2 · ‖β − β∗‖1 (C.36)

≥ −‖(β − β∗)S∗‖1‖∇L(β∗)‖∞ − ‖(β − β∗)S∗‖1‖∇L(β∗)‖∞ − ‖(β − β∗)S∗‖1‖∇Qλ(β∗)‖∞︸ ︷︷ ︸
(i) in (C.24)

+(ρ− − ζ−)‖β∗ − β‖22−λ‖(β − β∗)S∗‖1 + λ‖(β − β∗)S∗‖1︸ ︷︷ ︸
(ii) in (C.24)

.
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Again, we separate the left-hand side of (C.36) as λ/2 · ‖β − β∗‖1 = λ/2 · ‖(β − β∗)S∗‖1 + λ/2 ·
‖(β − β∗)S∗‖1. Rearranging the terms, we obtain

(ρ− − ζ−)‖β − β∗‖22 +
(
λ/2− ‖∇L(β∗)‖∞

)
‖(β − β∗)S∗‖1︸ ︷︷ ︸

(i)

(C.37)

≤
(
3λ/2 + ‖∇L(β∗)‖∞︸ ︷︷ ︸

(ii)

+ ‖∇Qλ(β∗)‖∞︸ ︷︷ ︸
(iii)

)
‖(β − β∗)S∗‖1.

For term (ii) in (C.37), by (4.1) in Assumption 4.1 and λ ≥ λtgt we have

‖∇L(β∗)‖∞ ≤ λtgt/8 ≤ λ/8. (C.38)

Meanwhile, (C.38) also implies that term (i) in (C.37) is positive. Recall thatQλ(β) =
∑d

j=1 qλ(βj),

where qλ(βj) satisfies regularity condition (d). Hence for term (iii) in (C.37) we have

‖∇Qλ(β∗)‖∞ = max
1≤j≤d

|q′λ(β∗j )| ≤ λ. (C.39)

In summary, from (C.37) we obtain

(ρ− − ζ−)‖β − β∗‖22 ≤
(
3λ/2 + ‖∇L(β∗)‖∞ + ‖∇Qλ(β∗)‖∞

)
‖(β − β∗)S∗‖1

≤ (3λ/2 + λ/8 + λ)‖(β − β∗)S∗‖1
≤ 21λ/8 ·

√
s∗‖(β − β∗)S∗‖2

≤ 21λ/8 ·
√
s∗‖β − β∗‖2. (C.40)

According to (4.5), we have ρ− − ζ− > 0. Therefore, (C.40) gives

‖β − β∗‖2 ≤
21/8

ρ− − ζ−
λ
√
s∗, (C.41)

which implies the first conclusion.

Results for the Objective Function Value: Note that on the right-hand side of (C.19), we

have ρ− − ζ− > 0, which gives

L̃λ(β∗) ≥ L̃λ(β) + (β∗ − β)T∇L̃λ(β). (C.42)

Meanwhile, since ξ ∈ ∂‖β‖1, by the convexity of `1 norm we have

λ‖β∗‖1 ≥ λ‖β‖1 + λ(β∗ − β)T ξ. (C.43)

Recall that φλ(β) = L̃λ(β) + λ‖β‖1. Adding (C.42) and (C.43), we obtain

φλ(β∗) ≥ φλ(β) + (β∗ − β)T
(
∇L̃λ(β) + λξ

)
, (C.44)

which implies

φλ(β)− φλ(β∗) ≤ (β − β∗)T
(
∇L̃λ(β) + λξ

)
≤ λ/2 · ‖β − β∗‖1.
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Here the second inequality follows from (C.23), which is a direct consequence of the assumption

that ωλ(β) ≤ λ/2. Separating the support of β − β∗ into S∗ and S∗, we obtain

φλ(β)− φλ(β∗) ≤ λ/2 · ‖β − β∗‖1 ≤ λ/2 · ‖(β − β∗)S∗‖1 + λ/2 · ‖(β − β∗)S∗‖1. (C.45)

Now we provide an upper bound of ‖(β − β∗)S∗‖1 on the right-hand side of (C.45). Note that, on

the left-hand side of (C.37), we have ρ− − ζ− > 0, which gives

(
λ/2− ‖∇L(β∗)‖∞

)
‖(β − β∗)S∗‖1

≤
(
3λ/2 + ‖∇L(β∗)‖∞ + ‖∇Qλ(β∗)‖∞

)
‖(β − β∗)S∗‖1. (C.46)

Note that in (C.47) we have ‖∇L(β∗)‖∞ ≤ λ/8 by (C.38), and ‖∇Qλ(β∗)‖∞ ≤ λ by (C.39). Hence

we have

(λ/2− λ/8)‖(β − β∗)S∗‖1 ≤ (3λ/2 + λ/8 + λ)‖(β − β∗)S∗‖1, (C.47)

which implies ‖(β − β∗)S∗‖1 ≤ 7‖(β − β∗)S∗‖1. Plugging this into the right-hand side of (C.45),

we obtain

φλ(β)− φλ(β∗) ≤ (λ/2 + 7λ/2)‖(β − β∗)S∗‖1 ≤ 4λ
√
s∗‖(β − β∗)S∗‖2 ≤ 4λ

√
s∗‖β − β∗‖2.(C.48)

Plugging the upper bound of ‖β − β∗‖2 in (C.41) into the right-hand side of (C.48), we obtain

φλ(β)− φλ(β∗) ≤ 21/2

ρ− − ζ−
λ2s∗.

Hence we reach the second conclusion.

C.6 Proof of Lemma 5.3

Proof. Since ‖βS∗‖0 ≤ s̃ and ‖β∗
S∗
‖0 = 0, we have ‖(β − β∗)S∗‖0 ≤ s̃. For logistic loss, we further

have ‖β‖2 ≤ R and ‖β∗‖2 ≤ R, where R is specified in Definition 4.3. Therefore, Lemma 5.1 gives

L̃λ(β∗) + (β − β∗)T∇L̃λ(β∗) +
ρ− − ζ−

2
‖β∗ − β‖22 ≤ L̃λ(β). (C.49)

Recall that φλ(β) = L̃λ(β) + λ‖β‖1. Hence, from our assumption that

φλ(β)− φλ(β∗) ≤ 21/2

ρ− − ζ−
λ2s∗

we obtain

L̃λ(β)− L̃λ(β∗) + λ(‖β‖1 − ‖β∗‖1) ≤ 21/2

ρ− − ζ−
λ2s∗. (C.50)

Plugging (C.49) into the left-hand side of (C.50), we have

(β − β∗)T∇L̃λ(β∗) +
ρ− − ζ−

2
‖β∗ − β‖22 + λ(‖β‖1 − ‖β∗‖1) ≤ 21/2

ρ− − ζ−
λ2s∗.
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Moving (β − β∗)T∇L̃λ(β∗) + λ(‖β‖1 − ‖β∗‖1) to its right-hand side, we obtain

ρ− − ζ−
2

‖β∗ − β‖22 ≤
21/2

ρ− − ζ−
λ2s∗−(β − β∗)T∇L̃λ(β∗)︸ ︷︷ ︸

(i)

+λ
(
‖β∗‖1 − ‖β‖1

)
︸ ︷︷ ︸

(ii)

. (C.51)

For term (i) in (C.51), following the same way we obtain the lower bound of term (i) in (C.24) (in

the proof of Lemma 5.2), we can obtain the same result as in (C.31), which implies

−(β − β∗)T∇L̃λ(β∗) (C.52)

≤ ‖(β − β∗)S∗‖1‖∇L(β∗)‖∞ + ‖(β − β∗)S∗‖1‖∇L(β∗)‖∞ + ‖(β − β∗)S∗‖1‖∇Qλ(β∗)‖∞.

For term (ii) in (C.51), separating the support of β and β∗ into S∗ and S∗ respectively, we obtain

‖β∗‖1 − ‖β‖1 = ‖β∗S∗‖1 + ‖β∗
S∗‖1 −

(
‖βS∗‖1 + ‖βS∗‖1

)
. (C.53)

Note that β∗
S∗

= 0, which gives βS∗ = βS∗ − β∗S∗ = (β − β∗)S∗ . Hence, from (C.53) we have

‖β∗‖1 − ‖β‖1 = ‖β∗S∗‖1 − ‖βS∗‖1 − ‖(β − β∗)S∗‖1 ≤ ‖(β − β∗)S∗‖1 − ‖(β − β∗)S∗‖1, (C.54)

where the inequality follows from the triangle inequality. Plugging (C.52) and (C.54) into the

right-hand side of (C.51), we obtain

ρ− − ζ−
2

‖β∗ − β‖22 (C.55)

≤ ‖(β − β∗)S∗‖1‖∇L(β∗)‖∞ + ‖(β − β∗)S∗‖1‖∇L(β∗)‖∞ + ‖(β − β∗)S∗‖1‖∇Qλ(β∗)‖∞︸ ︷︷ ︸
(i) in (C.51)

+λ
(
‖(β − β∗)S∗‖1 − ‖(β − β∗)S∗‖1

)
︸ ︷︷ ︸

(ii) in (C.51)

+
21/2

ρ− − ζ−
λ2s∗.

Rearranging the terms in (C.55), we obtain

ρ− − ζ−
2

‖β − β∗‖22 +
(
λ− ‖∇L(β∗)‖∞

)
‖(β − β∗)S∗‖1︸ ︷︷ ︸

(i)

(C.56)

≤
(
λ+ ‖∇L(β∗)‖∞︸ ︷︷ ︸

(ii)

+ ‖∇Qλ(β∗)‖∞︸ ︷︷ ︸
(iii)

)
‖(β − β∗)S∗‖1 +

21/2

ρ− − ζ−
λ2s∗.

By (4.1) in Assumption 4.1 and λ ≥ λtgt, for term (ii) in (C.56), we have

‖∇L(β∗)‖∞ ≤ λtgt/8 ≤ λ/8. (C.57)

Moreover, (C.57) implies that term (i) in (C.56) is positive. For term (iii) in (C.56), since Qλ(β) =∑d
j=1 qλ(βj), where qλ(βj) satisfies regularity condition (d), we have

‖∇Qλ(β∗)‖∞ ≤ max
1≤j≤d

|q′λ(β∗j )| ≤ λ. (C.58)
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Therefore, from (C.58) we obtain

ρ− − ζ−
2

‖β − β∗‖22 ≤
(
λ+ ‖∇L(β∗)‖∞ + ‖∇Qλ(β∗)‖∞

)
‖(β − β∗)S∗‖1 +

21/2

ρ− − ζ−
λ2s∗

≤ (λ+ λ/8 + λ)‖(β − β∗)S∗‖1 +
21/2

ρ− − ζ−
λ2s∗

≤ 17/8 · λ‖(β − β∗)S∗‖1 +
21/2

ρ− − ζ−
λ2s∗. (C.59)

To further provide an upper bound of the right-hand side of (C.59), we discuss two cases regarding

the relationship between ‖(β − β∗)S∗‖1 and λs∗.

• If 7/(ρ− − ζ−) · λs∗ < ‖(β − β∗)S∗‖1, then we have

21/2

ρ− − ζ−
λ2s∗ < 3/2 · λ‖(β − β∗)S∗‖1.

Plugging this into the right-hand side of (C.59), we obtain

ρ− − ζ−
2

‖β − β∗‖22 ≤ (17/8 · λ+ 3/2 · λ)‖(β − β∗)S∗‖1
≤ 29/8 · λ

√
s∗‖(β − β∗)S∗‖2

≤ 29/8 · λ
√
s∗‖β − β∗‖2.

Dividing ‖β∗ − β‖2 on both sides, we have

‖β − β∗‖2 ≤
29/4

ρ− − ζ−
λ
√
s∗. (C.60)

• If ‖(β − β∗)S∗‖1 ≤ 7/(ρ− − ζ−) · λs∗, then we have

17/8 · λ‖(β − β∗)S∗‖1 <
119/8

ρ− − ζ−
λ2s∗.

Plugging this into the right-hand side of (C.59), we obtain

ρ− − ζ−
2

‖β − β∗‖22 ≤
119/8

ρ− − ζ−
λ2s∗ +

21/2

ρ− − ζ−
λ2s∗ =

203/8

ρ− − ζ−
λ2s∗, (C.61)

which implies

‖β − β∗‖2 ≤
√

203/2

ρ− − ζ−
λ
√
s∗. (C.62)

Combining (C.60) and (C.62), since max{29/4,
√

203/2} ≤ 15/2, we obtain

‖β − β∗‖2 <
15/2

ρ− − ζ−
λ
√
s∗.

Hence we conclude the proof.
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C.7 Proof of Lemma 5.4

Proof. Recall that the proximal-gradient update step defined in (3.8) with Ω = Rd, i.e., R = +∞,

takes the form

(
TL,λ(β; +∞)

)
j

=

{
0 if

∣∣β̄j
∣∣ ≤ λ/L,

sign
(
β̄j
)(∣∣β̄j

∣∣− λ/L
)

if
∣∣β̄j
∣∣ > λ/L,

(C.63)

for j = 1, . . . , d, where

β̄ = β − 1

L
∇L̃λ

(
β
)
, (C.64)

and β̄j is the j-th dimension of β̄. Furthermore, if Ω = B2(R) of radius R ∈ (0,∞), TL,λ(β;R) can

be obtained by projecting TL,λ(β; +∞) shown in (C.63) onto B2(R), i.e.,

TL,λ(β;R) =





TL,λ(β; +∞) if ‖TL,λ(β; +∞)‖2 < R,

R · TL,λ(β; +∞)

‖TL,λ(β; +∞)‖2
if ‖TL,λ(β; +∞)‖2 ≥ R.

(C.65)

Note that TL,λ(β; +∞) and TL,λ(β;R) have exactly the same sparsity pattern. Hence we focus on

analyzing the sparsity pattern of TL,λ(β; +∞) in the following.

In fact, update scheme (C.63) defines a soft-thresholding operation on β̄ defined in (C.64), with

the threshold value λ/L. To show
∥∥(TL,λ(β; +∞)

)
S∗
∥∥

0
≤ s̃, we need to prove that, for j ∈ S∗, the

number of j’s such that
∣∣β̄j
∣∣ > λ/L is no more than s̃. To achieve this goal, we first reformulate β̄

as

β̄ = β − 1

L
∇L̃λ

(
β
)

= β − 1

L
∇L̃λ(β∗) +

1

L

(
∇L̃λ(β∗)−∇L̃λ(β)

)
. (C.66)

Then it suffices to prove there exist integers s̃1, s̃2 and s̃3, which satisfy s̃1 + s̃2 + s̃3 ≤ s̃, such that

∣∣{j ∈ S∗ : |βj | ≥ 1/4 · λ/L
}∣∣ ≤ s̃1, (C.67)∣∣∣

{
j ∈ S∗ :

∣∣(∇L̃λ(β∗)/L
)
j

∣∣ > 1/8 · λ/L
}∣∣∣ ≤ s̃2, (C.68)

∣∣∣
{
j ∈ S∗ :

∣∣(∇L̃λ(β)/L−∇L̃λ(β∗)/L
)
j

∣∣ ≥ 5/8 · λ/L
}∣∣∣ ≤ s̃3. (C.69)

This is because, if (C.67)−(C.69) hold, then there are at most s̃1 + s̃2 + s̃3 ≤ s̃ coordinates j ∈ S∗
such that

|βj |+
∣∣(∇L̃λ(β∗)/L

)
j

∣∣+
∣∣(∇L̃λ(β)/L−∇L̃λ(β∗)/L

)
j

∣∣ > λ/L.

Since by the triangular inequality (C.66) implies

∣∣β̄j
∣∣ ≤ |βj |+

∣∣(∇L̃λ(β∗)/L
)
j

∣∣+
∣∣(∇L̃λ(β)/L−∇L̃λ(β∗)/L

)
j

∣∣,

the number of coordinates j ∈ S∗ such that
∣∣β̄j
∣∣ > λ/L is also upper bounded by s̃1 + s̃2 + s̃3 ≤ s̃.

In the following, we will prove (C.68)−(C.69) and specify the corresponding s̃1, s̃2 and s̃3.

Proof of (C.67): Note that for j ∈ S∗, we have β∗j = 0. Hence we have

∣∣{j ∈ S∗ : |βj | ≥ 1/4 · λ/L
}∣∣ =

∣∣{j ∈ S∗ : |βj − β∗j | ≥ 1/4 · λ/L
}∣∣ . (C.70)
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Meanwhile, note that

λ

4L

∣∣{j ∈ S∗ : |βj − β∗j | ≥ 1/4 · λ/L
}∣∣ ≤

∑

j∈S∗
|βj − β∗j | · 1I

(
|βj − β∗j | ≥ 1/4 · λ/L

)

≤
∑

j∈S∗
|βj − β∗j |

= ‖(β − β∗)S∗‖1. (C.71)

Plugging (C.71) into the right-hand side of (C.70), we obtain

∣∣{j ∈ S∗ : |βj | ≥ 1/4 · λ/L
}∣∣ ≤ 4L

λ
‖(β − β∗)S∗‖1. (C.72)

Now we provide an upper bound of ‖(β−β∗)S∗‖1. Following the same way we derive (C.56) in the

proof of Lemma 5.3, we can obtain

ρ− − ζ−
2

‖β − β∗‖22 +
(
λ− ‖∇L(β∗)‖∞

)
‖(β − β∗)S∗‖1 (C.73)

≤
(
λ+ ‖∇L(β∗)‖∞ + ‖∇Qλ(β∗)‖∞

)
‖(β − β∗)S∗‖1 +

21/2

ρ− − ζ−
λ2s∗.

According to (4.5), we have ρ− − ζ− > 0. Hence (C.73) implies

(
λ− ‖∇L(β∗)‖∞

)
‖(β − β∗)S∗‖1

≤
(
λ+ ‖∇L(β∗)‖∞ + ‖∇Qλ(β∗)‖∞

)
‖(β − β∗)S∗‖1 +

21/2

ρ− − ζ−
λ2s∗. (C.74)

By (4.1) in Assumption 4.1 and λ ≥ λtgt, we have

‖∇L(β∗)‖∞ ≤ λtgt/8 ≤ λ/8. (C.75)

Meanwhile, since Qλ(β) =
∑d

j=1 qλ(βj) and qλ(βj) satisfies regularity condition (d), we have

‖∇Qλ(β∗)‖∞ = max
1≤j≤d

|q′λ(β∗j )| ≤ λ. (C.76)

Plugging (C.75) and (C.76) into (C.74) and dividing λ on both sides, we obtain

7/8 · ‖(β − β∗)S∗‖1 ≤ 17/8 · ‖(β − β∗)S∗‖1 +
21/2

ρ− − ζ−
λs∗. (C.77)

Now we discuss two cases regarding the relationship between ‖(β − β∗)S∗‖1 and λs∗.

• If 7/(ρ− − ζ−) · λs∗ < ‖(β − β∗)S∗‖1, then we have

21/2

ρ− − ζ−
λs∗ ≤ 3/2 · ‖(β − β∗)S∗‖1.

Plugging this into the right-hand side of (C.77), we obtain ‖(β−β∗)S∗‖1 ≤ 29/7·‖(β−β∗)S∗‖1,

which implies

‖(β − β∗)S∗‖1≤29/7·‖(β − β∗)S∗‖1≤29/7·
√
s∗‖(β − β∗)S∗‖2≤29/7·

√
s∗‖β − β∗‖2. (C.78)
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Plugging the upper bound of ‖β − β∗‖2 in Lemma 5.3 into the right-hand side of (C.78), we

obtain

‖(β − β∗)S∗‖1 ≤ 29/7 ·
√
s∗ · 15/2

ρ− − ζ−
λ
√
s∗ =

435/14

ρ− − ζ−
λs∗. (C.79)

• If ‖(β − β∗)S∗‖1 ≤ 7/(ρ− − ζ−) · λs∗, then plugging this into the right-hand side of (C.77),

we obtain

‖(β − β∗)S∗‖1 ≤ 8/7 ·
(

17/8 · 7
ρ− − ζ−

λs∗ +
21/2

ρ− − ζ−
λs∗
)
≤ 29

ρ− − ζ−
λs∗. (C.80)

Combining (C.79) and (C.80), we obtain

‖(β − β∗)S∗‖1 ≤
max{435/14, 29}

ρ− − ζ−
λs∗ ≤ 435/14

ρ− − ζ−
λs∗.

Plugging this into the right-hand side of (C.72), we obtain

∣∣{j ∈ S∗ : |βj | ≥ 1/4 · λ/L
}∣∣ ≤ 4L

λ
· 435/14

ρ− − ζ−
λs∗ <

125L

ρ− − ζ−
s∗.

Meanwhile, since we assume L < 2(ρ+ − ζ+), we have

∣∣{j ∈ S∗ : |βj | ≥ 1/4 · λ/L
}∣∣ < 250 · ρ+ − ζ+

ρ− − ζ−
· s∗ = 250κs∗,

where the last equality follows from the definition of the condition number κ in (4.4). Therefore

we obtain (C.67) by setting s̃1 = 250κs∗.

Proof of (C.68): Recall that ∇L̃λ(β) = L(β) +Qλ(β). Hence we have

∥∥(∇L̃λ(β∗)
)
S∗
∥∥
∞ ≤

∥∥(∇L(β∗)
)
S∗
∥∥
∞ +

∥∥(∇Qλ(β∗)
)
S∗
∥∥
∞ . (C.81)

By (4.1) in Assumption 4.1, we have

∥∥(∇L(β∗)
)
S∗
∥∥
∞ ≤ ‖∇L(β∗)‖∞ ≤ λ/8. (C.82)

Recall Qλ(β) =
∑d

j=1 qλ(βj), where qλ(βj) satisfies regularity condition (c) that q′λ(0) = 0. Hence

we have

∥∥(∇Qλ(β∗)
)
S∗
∥∥
∞ = max

j∈S∗

∣∣q′λ(β∗j )
∣∣ = max

j∈S∗

∣∣q′λ(0)
∣∣ = 0, (C.83)

where the second equation follows from the fact that β∗j = 0 for j ∈ S∗. Plugging (C.83) and (C.82)

into the right-hand side of (C.81), we obtain
∥∥(∇L̃λ(β∗)

)
S∗
∥∥
∞ = maxj∈S∗

∣∣(∇L̃λ(β∗)/L
)
j

∣∣ ≤ λ/8.
Hence we have ∣∣∣

{
j ∈ S∗ :

∣∣(∇L̃λ(β∗)/L
)
j

∣∣ > 1/8 · λ/L
}∣∣∣ = 0.

Therefore, by setting s̃2 = 0, we obtain (C.68).
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Proof of (C.69): Consider an arbitrary subset S′ such that

S′ ⊆
{
j :
∣∣(∇L̃λ(β)−∇L̃λ(β∗)

)
j

∣∣ ≥ 5/8 · λ
}
. (C.84)

Let s′ = |S′|. In the following we provide an upper bound of s′. Suppose v ∈ Rd is chosen such

that vj = sign
{(
∇L̃λ(β)−∇L̃λ(β∗)

)
j

}
for j ∈ S′, and vj = 0 for j /∈ S′. Hence we have

vT
(
∇L̃λ(β)−∇L̃λ(β∗)

)
=
∑

j∈S′
vj
(
∇L̃λ(β)−∇L̃λ(β∗)

)
j

=
∑

j∈S′

∣∣(∇L̃λ(β)−∇L̃λ(β∗)
)
j

∣∣

≥ 5/8 · λs′. (C.85)

Meanwhile, by Cauchy Schwarz inequality we have

vT
(
∇L̃λ(β)−∇L̃λ(β∗)

)
≤ ‖v‖2

∥∥∇L̃λ(β)−∇L̃λ(β∗)
∥∥

2
≤
√
s′
∥∥∇L̃λ(β)−∇L̃λ(β∗)

∥∥
2
, (C.86)

where the last inequality follows from the fact that ‖v‖2 ≤
√
s′‖v‖∞ =

√
s′, because v is chosen

such that ‖v‖0 = s′. Combining (C.85) and (C.86), we have

5/8 · λs′ ≤ vT
(
∇L̃λ(β)−∇L̃λ(β∗)

)
≤
√
s′
∥∥∇L̃λ(β)−∇L̃λ(β∗)

∥∥
2
. (C.87)

Since ‖βS∗‖0 ≤ s̃ and ‖β∗
S∗
‖0 = 0, we have ‖(β − β∗)S∗‖ ≤ s̃. In the setting of logistic loss, we

further have ‖β‖2 ≤ R and ‖β∗‖2 ≤ R, where R is specified in Definition 4.3. Therefore, Lemma

5.1 implies that L̃λ(β) is restricted strongly smooth. Hence we have

L̃λ(β) ≤ L̃λ(β∗) + (β − β∗)T∇L̃λ(β∗) +
ρ+ − ζ+

2
‖β∗ − β‖22. (C.88)

According to Nesterov (2004, Theorem 2.1.9), the strong smoothness of L̃λ(β) is equivalent to the

Lipschitz continuity of its gradient, i.e.,

∥∥∇L̃λ(β)−∇L̃λ(β∗)
∥∥

2
≤ (ρ+ − ζ+)‖β − β∗‖2. (C.89)

Plugging (C.89) into the right-hand side of (C.87), we obtain

5/8 · λs′ ≤ (ρ+ − ζ+) ·
√
s′‖β − β∗‖2. (C.90)

Plugging the upper bound of ‖β−β∗‖2 in Lemma 5.3 into the right-hand side of (C.90), we obtain

√
s′ ≤ 8

5λ
· (ρ+ − ζ+)‖β − β∗‖2 ≤

8

5λ
· (ρ+ − ζ+) · 15/2

ρ− − ζ−
λ
√
s∗ = 12κ

√
s∗, (C.91)

where the last equality follows from the definition of the condition number κ in (4.4). Hence we

obtain s′ ≤ 144κ2s∗. Note that S′ is defined as an arbitrary subset of
{
j :
∣∣(∇L̃λ(β)−∇L̃λ(β∗)

)
j

∣∣ ≥
5/8 · λ

}
and

{
j ∈ S∗ :

∣∣(∇L̃λ(β)−∇L̃λ(β∗)
)
j

∣∣ ≥ 5/8 · λ
}
⊆
{
j :
∣∣(∇L̃λ(β)−∇L̃λ(β∗)

)
j

∣∣ ≥ 5/8 · λ
}
.
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Hence we have
∣∣∣
{
j ∈ S∗ :

∣∣(∇L̃λ(β)/L−∇L̃λ(β∗)/L
)
j

∣∣ ≥ 5/8 · λ/L
}∣∣∣ ≤ 144κ2s∗.

Therefore, by setting s̃3 = 144κ2s∗, we obtain (C.69).

In summary, we prove that (C.68)−(C.69) hold with s̃1 = 250κs∗, s̃2 = 0 and s̃2 = 144κ2s∗. In

Assumption 4.4, we assume s̃ ≥ 144κ2 + 250κ, which implies s̃1 + s̃2 + s̃3 ≤ s̃. Therefore we have∥∥(TL,λ(β; +∞)
)
S∗
∥∥

0
< s̃. Since TL,λ(β;R) has the same sparsity pattern as TL,λ(β; +∞), we also

have that
∥∥(TL,λ(β;R)

)
S∗
∥∥

0
< s̃ for R ∈ (0,+∞). Hence we conclude the proof.

C.8 Proof of Theorem 5.5

We first provide a useful lemma. It states that if β is ε-suboptimal with respect to the regularization

parameter λ and sufficiently sparse, then for λ′ ≤ λ the objective function value φλ′(β) is close to

φλ′
(
β̂λ′
)
. Here β̂λ′ is the exact local solution corresponding to λ′.

Lemma C.7. Let λ ≥ λtgt and λ′ ∈ [λtgt, λ]. Suppose ‖βS∗‖0 ≤ s̃ and ωλ(β) ≤ ε. Let β̂λ′ be the

exact local solution corresponding to λ′, which satisfies the exact optimality condition in (3.14) and∥∥(β̂λ′
)
S∗
∥∥

0
≤ s̃. For logistic loss, we further assume max

{
‖β‖2,

∥∥β̂λ′
∥∥

2

}
≤ R, where R is specified

in Definition 4.3. Under Assumption 4.1 and Assumption 4.4, we have

φλ′(β)− φλ′
(
β̂λ′
)
≤ C

(
ε+ 2(λ− λ′)

)
· (λ′ + λ)s∗, where C =

21

ρ− − ζ−
.

Proof. Since ‖βS∗‖0 ≤ s̃ and
∥∥(β̂λ′

)
S∗
∥∥

0
≤ s̃, we have

∥∥(β− β̂λ′
)
S∗
∥∥ ≤ 2s̃. In the setting of logistic

loss, we further have ‖β‖2 ≤ R and
∥∥β̂λ′

∥∥
2
≤ R. Therefore, Lemma 5.1 gives

L̃λ′
(
β̂λ′
)
≥ L̃λ′(β)+

(
β̂λ′−β

)T∇L̃λ′(β)+
ρ−−ζ−

2

∥∥β̂λ′−β
∥∥2

2
≥ L̃λ′(β)+

(
β̂λ′−β

)T∇L̃λ′(β),(C.92)

where the second inequality is because ρ− − ζ− > 0, which follows from (4.5).

Let ξ ∈ ∂‖β‖1 be the subgradient that attains the minimum in

ωλ(β) = min
ξ′∈∂‖β‖1

max
β′∈Ω

{
(β − β′)T
‖β − β′‖1

(
∇L̃λ(β) + λξ′

)}
, (C.93)

where Ω = B2(R) in the setting of logistic loss and Ω = Rd in other settings. Since ξ is a minimizer,

we have

ωλ(β) = max
β′∈Ω

{
(β − β′)T
‖β − β′‖1

(
∇L̃λ(β) + λξ

)}
. (C.94)

By the convexity of `1 norm, we also have

λ′
∥∥β̂λ′

∥∥
1
≥ λ′‖β‖1 + λ′ξT

(
β̂λ′ − β

)
. (C.95)

Recall that the objective function φλ(β) is defined as φλ(β) = L̃λ(β) + λ‖β‖1. Adding (C.92) and

(C.95), we obtain

φλ′
(
β̂λ′
)
≥ φλ′(β) +

(
∇L̃λ′(β) + λ′ξ

)T (
β̂λ′ − β

)
.
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Hence we have

φλ′(β)− φλ′
(
β̂λ′
)
≤
(
∇L̃λ′(β) + λ′ξ

)T (
β − β̂λ′

)

=
((
∇L(β) +∇Qλ(β)︸ ︷︷ ︸

∇L̃λ(β)

+λξ
)

+
(
∇Qλ′(β)−∇Qλ(β)

)
+ (λ′ξ − λξ)

)T (
β − β̂λ′

)

≤
(
∇L̃λ(β) + λξ

)T (
β − β̂λ′

)
︸ ︷︷ ︸

(i)

+
∥∥∇Qλ′(β)−∇Qλ(β)

∥∥
∞︸ ︷︷ ︸

(ii)

∥∥β − β̂λ′
∥∥

1︸ ︷︷ ︸
(iv)

(C.96)

+ ‖λ′ξ − λξ‖∞︸ ︷︷ ︸
(iii)

∥∥β − β̂λ′
∥∥

1︸ ︷︷ ︸
(iv)

.

Now we provide upper bounds of terms (i)−(iv) correspondingly.

Bounding Term (i) in (C.96): According to (C.94), we have

(
β − β̂λ′

)T
∥∥β − β̂λ′

∥∥
1

(
∇L̃λ(β) + λξ

)
≤ max
β′∈Ω

{
(β − β′)T
‖β − β′‖1

(
∇L̃λ(β) + λξ

)}
= ωλ(β) ≤ ε,

where the last inequality is our assumption. Therefore we obtain

(
∇L̃λ(β) + λξ

)T (
β − β̂λ′

)
≤ ε ·

∥∥β − β̂λ′
∥∥

1
. (C.97)

We will provide an upper bound of
∥∥β − β̂λ′

∥∥
1

when we handle term (iv).

Bounding Term (ii) in (C.96): Recall that Qλ(β) =
∑d

i=1 qλ(βj). We have

∥∥∇Qλ′(β)−∇Qλ(β)
∥∥
∞ = max

1≤j≤d

∣∣qλ′(βj)− qλ(βj)
∣∣ ≤ max

1≤j≤d
|λ′ − λ| = λ− λ′, (C.98)

where the inequality follows from regularity condition (e), and the last equality is because λ ≥ λ′.
Bounding Term (iii) in (C.96): Since ξ ∈ ∂‖β‖1, we have ‖ξ‖∞ ≤ 1. Then we obtain

‖λ′ξ − λξ‖∞ = |λ′ − λ|‖ξ‖∞ ≤ |λ− λ′| = λ− λ′. (C.99)

Bounding Term (iv) in (C.96): Note that

∥∥β − β̂λ′
∥∥

1
≤ ‖β − β∗‖1︸ ︷︷ ︸

(iv).a

+
∥∥β̂λ′ − β∗

∥∥
1︸ ︷︷ ︸

(iv).b

. (C.100)

For term (iv).a, since β satisfies ‖βS∗‖0 ≤ s̃, ωλ(β) ≤ λ/2, and ‖β‖2 ≤ R for logistic loss, we have

that β satisfies the assumptions of Lemma 5.2. Following the same way we obtain (C.47) in the

proof of Lemma 5.2, we can get

(λ/2− λ/8)‖(β − β∗)S∗‖1 ≤ (3λ/2 + λ/8 + λ)‖(β − β∗)S∗‖1,

which implies ‖(β − β∗)S∗‖1 ≤ 7‖(β − β∗)S∗‖1. Hence we obtain

‖β−β∗‖1 ≤ ‖(β−β∗)S∗‖1+‖(β−β∗)S∗‖1 ≤ 8‖(β−β∗)S∗‖1 ≤ 8
√
s∗‖(β−β∗)S∗‖2 ≤ 8

√
s∗‖β−β∗‖2.
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Plugging in the upper bound of ‖β − β∗‖2 in Lemma 5.2, we obtain

‖β − β∗‖1 ≤
21

ρ− − ζ−
λs∗. (C.101)

Meanwhile, for term (iv).b, note that we assume β̂λ′ satisfies
∥∥(β̂λ′

)
S∗
∥∥

0
≤ s̃ and

∥∥β̂λ′
∥∥

2
≤ R for

logistic loss. Moreover, since β̂λ′ is an exact local solution, it satisfies the exact optimality condition

ω
(
β̂λ′
)
≤ 0, which implies ω

(
β̂λ′
)
< λ′/2. Hence β̂λ′ also satisfies the conditions of Lemma 5.2.

Similar to (C.101), we have

∥∥β̂λ′ − β∗
∥∥

1
≤ 21

ρ− − ζ−
λ′s∗. (C.102)

Plugging (C.102) and (C.101) into (C.100), for term (iv) in (C.96), we obtain

∥∥β − β̂λ′
∥∥

1
≤ 21

ρ− − ζ−
(λ′ + λ)s∗. (C.103)

Plugging (C.97)−(C.99) and (C.103) into the right-hand side of (C.96), we obtain

φλ′(β)− φλ′
(
β̂λ′
)

≤ ε · 21

ρ− − ζ−
(λ′ + λ)s∗

︸ ︷︷ ︸
(i) in (C.96)

+
(

(λ− λ′)︸ ︷︷ ︸
(ii) in (C.96)

+ (λ− λ′)︸ ︷︷ ︸
(iii) in (C.96)

)
· 21

ρ− − ζ−
(λ′ + λ)s∗

︸ ︷︷ ︸
(iv) in (C.96)

≤ 21

ρ− − ζ−
(
ε+ 2(λ− λ′)

)
· (λ′ + λ)s∗,

where the upper bound of term (i) in (C.96) is obtained by plugging (C.103) into the right-hand

side of (C.97). Hence we conclude the proof.

Now we are ready to prove Theorem 5.5.

Proof. Sparsity of
{
β

(k)
t

}∞
k=0

within the t-th Stage: In the following, we provide results con-

cerning the sparsity of the sequence
{
β

(k)
t

}∞
k=0

within the t-th path following stage. In the following

we prove this by induction. Note that the initialization satisfies

∥∥(β(0)
t

)
S∗
∥∥

0
≤ s̃, ωλt

(
β

(0)
t

)
≤ λt/2, and L

(0)
t ≤ 2(ρ+ − ζ+). (C.104)

By Lemma 5.2 we have

φλt
(
β

(0)
t

)
− φλt(β∗) ≤

21/2

ρ− − ζ−
λ2
t s
∗, (C.105)

Suppose that, at the (k− 1)-th iteration of the proximal-gradient method (Lines 5−9 of Algorithm

3), we have

∥∥(β(k−1)
t

)
S∗
∥∥

0
≤ s̃, L

(k−1)
t ≤ 2(ρ+ − ζ+), and φλt

(
β

(k−1)
t

)
− φλt(β∗) ≤

21/2

ρ− − ζ−
λ2
t s
∗,(C.106)
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Then according to Lemma 5.4, we have that β
(k)
t = T

L
(k)
t ,λt

(
β

(k−1)
t ;R

)
satisfies

∥∥(β(k)
t

)
S∗
∥∥

0
≤ s̃. (C.107)

Note that, in the setting of logistic loss, we always have
∥∥β(k)

t

∥∥
2
≤ R for k = 0, 1, . . . because

of the `2 constraint Ω = B2(R). Since
∥∥(β(k−1)

t

)
S∗
∥∥

0
≤ s̃ and

∥∥(β(k)
t

)
S∗
∥∥

0
≤ s̃ imply

∥∥(β(k−1)
t −

β
(k)
t

)
S∗
∥∥ ≤ 2s̃, by Lemma 5.1 we have

L̃λt
(
β

(k)
t

)
≥ L̃λt

(
β

(k−1)
t

)
+∇L̃λt

(
β

(k−1)
t

)T (
β

(k)
t − β

(k−1)
t

)
+
ρ− − ζ−

2

∥∥β(k)
t − β

(k−1)
t

∥∥2

2
, (C.108)

L̃λt
(
β

(k)
t

)
≤ L̃λt

(
β

(k−1)
t

)
+∇L̃λt

(
β

(k−1)
t

)T (
β

(k)
t − β

(k−1)
t

)
+
ρ+ − ζ+

2

∥∥β(k)
t − β

(k−1)
t

∥∥2

2
. (C.109)

Now we prove that (C.109) guarantees the line-search method in Algorithm 2 produces L
(k)
t ≤

2(ρ+ − ζ+). We prove by contradiction. We assume that, when the line-search method stops, it

outputs L
(k)
t > 2(ρ+ − ζ+). Recall that we double L

(k)
t at each line-search iteration (Line 6 of

Algorithm 2). Then at the line-search iteration right before the line-search method stops, we have

L
(k)
t

′
= L

(k)
t /2 > (ρ+ − ζ+). Remind that the objective function φλ(β) = L̃λ(β) + λ‖β‖1. Adding

λt
∥∥β(k)

t

∥∥
1

to the both sides of (C.109), we obtain

φλt
(
β

(k)
t

)
= L̃λt

(
β

(k)
t

)
+ λt

∥∥β(k)
t

∥∥
1

≤ L̃λt
(
β

(k−1)
t

)
+∇L̃λt

(
β

(k−1)
t

)T (
β

(k)
t − β

(k−1)
t

)
+
ρ+ − ζ+

2

∥∥β(k)
t − β

(k−1)
t

∥∥2

2
+ λt

∥∥β(k)
t

∥∥
1

≤ L̃λt
(
β

(k−1)
t

)
+∇L̃λt

(
β

(k−1)
t

)T (
β

(k)
t − β

(k−1)
t

)
+
L

(k)
t

′

2

∥∥β(k)
t − β

(k−1)
t

∥∥2

2
+ λt

∥∥β(k)
t

∥∥
1

= ψ
L
(k)
t

′
,λt

(
β

(k)
t ;β

(k−1)
t

)
,

where the last equality follows from (3.7). The stopping criterion of Algorithm 2 (Line 7) im-

plies that the line-search method should have already stopped and output L
(k)
t

′
= L

(k)
t /2, which

contradicts our assumption that the line-search method outputs L
(k)
t . Therefore we have

L
(k)
t ≤ 2(ρ+ − ζ+). (C.110)

Moreover, according to (C.108) and (C.109), Lemma C.1 holds, i.e.,

φλt
(
β

(k)
t

)
≤ φλt

(
β

(k−1)
t

)
− L

(k)
t

2

∥∥β(k)
t − β

(k−1)
t

∥∥2

2
, (C.111)

which implies

φλt
(
β

(k)
t

)
− φλt(β∗) ≤ φλt

(
β

(k−1)
t

)
− L

(k)
t

2

∥∥β(k)
t − β

(k−1)
t

∥∥2

2
− φλt(β∗) ≤

21/2

ρ− − ζ−
λ2
t s
∗. (C.112)

According to (C.107) and (C.110)−(C.112), now we have

∥∥(β(k)
t

)
S∗
∥∥

0
≤ s̃, L

(k)
t ≤ 2(ρ+ − ζ+), and φλt

(
β

(k)
t

)
− φλt(β∗) ≤

21/2

ρ− − ζ−
λ2
t s
∗. (C.113)
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Combining (C.104), (C.106) and (C.113), by induction we prove that (C.113) holds for all k =

0, 1, . . . within the t-th path following stage. Furthermore, by Lemma 5.3 we know that all β
(k)
t ’s

have nice statistical recovery properties, i.e.,

∥∥β(k)
t − β∗

∥∥
2
≤ 15/2

ρ− − ζ−
λt
√
s∗, for k = 0, 1, . . . .

Convergence to a Unique Local Solution: In the following, we prove that, within the t-th path

following stage, the limit point of the sequence
{
β

(k)
t

}∞
k=0

generated by Algorithm 3 is a unique

exact local solution. Since
∥∥(β(0)

t

)
S∗
∥∥ ≤ s̃, according to the restricted strong convexity of L̃λ(β) in

Lemma 5.1, the sub-level set
{
β : φλt(β) ≤ φλt

(
β

(0)
t

)
,
∥∥(β(0)

t − β
)
S∗
∥∥ ≤ 2s̃

}

is bounded. From (C.111) and (C.113) we have

φλt
(
β

(k)
t

)
≤ φλt

(
β

(0)
t

)
and

∥∥(β(k)
t

)
S∗
∥∥

0
≤ s̃, for k = 1, 2, . . . .

Thus
{
β

(k)
t

}∞
k=0

is bounded, which implies
{
φλt
(
β

(k)
t

)}∞
k=0

is also bounded. Meanwhile, (C.111)

implies that
{
φλt
(
β

(k)
t

)}∞
k=0

decreases monotonically. By the Bolzano-Weierstrass theorem, the

limit point of
{
φλt
(
β

(k)
t

)}∞
k=0

is unique, which implies

lim
k→∞

{
φλt
(
β

(k)
t

)
− φλt

(
β

(k−1)
t

)}
= 0.

Consequently, by (C.111) we have that, for any limit point of
{
β(k)

}∞
k=0

,

lim
k→∞

{∥∥β(k)
t − β

(k−1)
t

∥∥
2

}
≤ 2

L
(k)
t

· lim
k→∞

{
φλt
(
β

(k)
t

)
− φλt

(
β

(k−1)
t

)}
= 0.

Moreover, Lemma C.2 implies

lim
k→∞

{
ωλt
(
β

(k)
t

)}
≤
(
L

(k)
t + (ρ+ − ζ+)

)
· lim
k→∞

{∥∥β(k)
t − β

(k−1)
t

∥∥
2

}
= 0.

In other words,
{
β

(k)
t

}∞
k=0

has a convergent subsequence such that limk→∞
{
ωλt
(
β

(k)
t

)}
≤ 0. Fur-

thermore, it implies that such a convergent subsequence of
{
β

(k)
t

}∞
k=0

converges towards an ex-

act local solution β̂λt that satisfies the exact optimal condition in (3.14). By (C.113) we have∥∥(β(k)
t

)
S∗
∥∥

0
≤ s̃ (k = 1, 2, . . .), which implies

∥∥(β̂λt
)
S∗
∥∥

0
≤ s̃.

Now we prove the uniqueness of this exact local solution by contradiction. Let ξ ∈ ∂
∥∥β̂λt

∥∥
1

be

the subgradient that attains the minimum in

ωλt
(
β̂λt
)

= min
ξ′∈∂‖β̂λt‖1

max
β′∈Ω

{(
β̂λt − β′

)T
∥∥β̂λt − β′

∥∥
1

(
∇L̃λt

(
β̂λt
)

+ λtξ
′
)}

. (C.114)

Since ωλt
(
β̂λt
)
≤ 0, we have

max
β′∈Ω

{(
β̂λt − β′

)T
∥∥β̂λt − β′

∥∥
1

(
∇L̃λt

(
β̂λt
)

+ λtξ
)}
≤ 0. (C.115)

53



We assume there exists another local solution β̂′λt , which is the limit point of another convergent

subsequence of
{
β

(k)
t

}∞
k=0

. Since
∥∥(β̂′λt

)
S∗
∥∥

0
≤ s̃, we have

∥∥(β̂′λt − β̂λt
)
S∗
∥∥ ≤ 2s̃. In the setting of

logistic loss, we have
∥∥β̂′λt

∥∥
2
≤ R and

∥∥β̂λt
∥∥

2
≤ R by the `2 constraint. Hence Lemma 5.1 implies

L̃λt
(
β̂′λt
)
≥ L̃λt

(
β̂λt
)

+
(
β̂′λt − β̂λt

)T∇L̃λt
(
β̂λt
)

+
ρ− − ζ−

2

∥∥β̂′λt − β̂λt‖22. (C.116)

Meanwhile, the convexity of `1 norm implies

λt
∥∥β̂′λt

∥∥
1
≥ λt

∥∥β̂λt
∥∥

1
+ λt

(
β̂′λt − β̂λt

)T
ξ. (C.117)

Recall that the objective function φλ(β) = L̃λ(β)+λ‖β‖1. Adding (C.116) and (C.117), we obtain

φλt
(
β̂′λt
)
− φλt

(
β̂λt
)
≥
(
∇L̃λt

(
β̂λt
)

+ λtξ
)T (

β̂′λt − β̂λt
)

︸ ︷︷ ︸
(i)

+
ρ− − ζ−

2

∥∥β̂′λt − β̂λt
∥∥2

2
. (C.118)

Since (C.115) implies

(
β̂λt − β̂′λt

)T
∥∥β̂λt − β̂′λt

∥∥
1

(
∇L̃λt

(
β̂λt
)

+ λtξ
)
≤ max
β′∈Ω

{(
β̂λt − β′

)T
∥∥β̂λt − β′

∥∥
1

(
∇L̃λt

(
β̂λt
)

+ λtξ
)}
≤ 0,

term (i) in (C.118) is nonnegative. Hence we obtain

φλt
(
β̂′λt
)
− φλt

(
β̂λt
)
≥ ρ− − ζ−

2

∥∥β̂′λt − β̂λt
∥∥2

2
. (C.119)

Because we already know that the limit point of
{
φλt
(
β

(k)
t

)}∞
k=0

is unique, which implies φλt
(
β̂′λt
)
−

φλt
(
β̂λt
)

= 0. Then we obtain
∥∥β̂′λt− β̂λt

∥∥2

2
= 0, which contradicts our assumption that β̂′λt 6= β̂λt .

In other words, we prove that the sequence
{
β

(k)
t

}∞
k=0

converges to a unique local solution β̂λt .

Geometric Rate of Convergence of Algorithm 3: Now we establish the geometric rate of

convergence of Algorithm 3. According to the stopping criterion of Algorithm 2, we have

φλt
(
β

(k)
t

)
≤ ψ

L
(k)
t ,λt

(
β

(k)
t ;β

(k−1)
t

)

= min
β

{
L̃λt
(
β

(k−1)
t

)
+∇L̃λt

(
β

(k−1)
t

)T (
β − β(k−1)

t

)
+
L

(k)
t

2

∥∥β − β(k−1)
t

∥∥2

2
+ λt‖β‖1

}

≤ min
β=αβ̂λt+(1−α)β

(k−1)
t

α∈[0,1]

{
L̃λt
(
β

(k−1)
t

)
+∇L̃λt

(
β

(k−1)
t

)T (
β − β(k−1)

t

)
︸ ︷︷ ︸

(i)

+
L

(k)
t

2

∥∥β − β(k−1)
t

∥∥2

2
+ λt‖β‖1

}
.

(C.120)

For term (i), since
∥∥(β(k−1)

t

)
S∗
∥∥

0
≤ s̃,

∥∥(β̂λt
)
S∗
∥∥

0
≤ s̃ and β = αβ̂λt +(1−α)β

(k−1)
t with α ∈ [0, 1],

we have
∥∥(β − β(k−1)

t

)
S∗
∥∥

0
≤ 2s̃. For logistic loss, since

∥∥β(k−1)
t

∥∥
2
≤ R and

∥∥β̂λt
∥∥

2
≤ R, we have

‖β‖2 ≤ R, since the `2 ball B2(R) is a convex set. Applying Lemma 5.1, we have

L̃λt(β) ≥ L̃λt
(
β

(k−1)
t

)
+∇L̃λt

(
β

(k−1)
t

)T (
β − β(k−1)

t

)
+
ρ− − ζ−

2

∥∥β − β(k−1)
t

∥∥2

2

≥ L̃λt
(
β

(k−1)
t

)
+∇L̃λt

(
β

(k−1)
t

)T (
β − β(k−1)

t

)
, (C.121)
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where the second inequality follows from (4.5). Plugging (C.121) into (C.120), we obtain

φλt
(
β

(k)
t

)
≤ min
β=αβ̂λt+(1−α)β

(k−1)
t

α∈[0,1]

{
L̃λt(β) +

L
(k)
t

2

∥∥β − β(k−1)
t

∥∥2

2
+ λt‖β‖1

}
. (C.122)

Since
∥∥(β(k−1)

t

)
S∗
∥∥

0
≤ s̃ and

∥∥(β̂λt
)
S∗
∥∥

0
≤ s̃ imply

∥∥(β̂λt − β
(k−1)
t

)
S∗
∥∥

0
≤ 2s̃, Lemma 5.1 implies

that the strong convexity of L̃λt(β) holds for β̂λt and β
(k−1)
t . Hence we have

L̃λt(β) = L̃λt
(
αβ̂λt + (1− α)β(k−1)

)
≤ αL̃λt

(
β̂λt
)

+ (1− α)L̃λt
(
β(k−1)

)
. (C.123)

Meanwhile, by the convexity of `1 norm we have

λt‖β‖1 = λt
∥∥αβ̂λt + (1− α)β(k−1)

∥∥
1
≤ αλt

∥∥β̂λt
∥∥

1
+ (1− α)

∥∥β(k−1)
∥∥

1
. (C.124)

Plugging (C.123) and (C.124) into the right-hand side of (C.122), we obtain

φλt
(
β

(k)
t

)
≤ min
α∈[0,1]

{
α
(
L̃λt
(
β̂λt
)

+ λt
∥∥β̂λt

∥∥
1

)
+ (1− α)

(
L̃λt
(
β

(k−1)
t

)
+ λt

∥∥β(k−1)
t

∥∥
1

)

+
L

(k)
t

2

∥∥αβ̂λt + (1− α)β
(k−1)
t − β(k−1)

t

∥∥2

2

}

= min
α∈[0,1]

{
αφλt

(
β̂λt
)

+ (1− α)φλt
(
β

(k−1)
t

)
+
L

(k)
t

2

∥∥αβ̂λt + (1− α)β
(k−1)
t − β(k−1)

t

∥∥2

2

}

≤ min
α∈[0,1]

{
φλt
(
β

(k−1)
t

)
− α

(
φλt
(
β

(k−1)
t

)
− φλt

(
β̂λt
))

+
α2L

(k)
t

2

∥∥β(k−1)
t − β̂λt

∥∥2

2︸ ︷︷ ︸
(i)

}
.(C.125)

For term (i), similar to (C.119), applying the exact optimality condition of β̂λt and the restricted

strong convexity of L̃λt(β), we obtain

φλt
(
β

(k−1)
t

)
− φλt

(
β̂λt
)
≥ ρ− − ζ−

2

∥∥β(k−1)
t − β̂λt

∥∥2

2
.

Plugging this into the right-hand side of (C.125), we obtain

φλt
(
β

(k)
t

)
≤ min

α∈[0,1]

{
φλt
(
β

(k−1)
t

)
− α

(
φλt
(
β

(k−1)
t

)
− φλt

(
β̂λt
))

(C.126)

+
α2L

(k)
t

2
· 2

ρ− − ζ−

(
φλt
(
β

(k−1)
t

)
− φλt

(
β̂λt
))}

.

The right-hand side of (C.126) attains the minimum when α = (ρ− − ζ−)/
(
2L

(k)
t

)
. Plugging this

value of α, we obtain

φλt
(
β

(k)
t

)
≤ φλt

(
β

(k−1)
t

)
− ρ− − ζ−

4L
(k)
t

(
φλt
(
β

(k−1)
t

)
− φλt

(
β̂λt
))
,
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which implies

φλt
(
β

(k)
t

)
− φλt

(
β̂λt
)
≤

(
φλt
(
β

(k−1)
t

)
− φλt

(
β̂λt
))
− ρ− − ζ−

4L
(k)
t

(
φλt
(
β

(k−1)
t

)
− φλt

(
β̂λt
))

=

(
1− ρ− − ζ−

4L
(k)
t

)(
φλt
(
β

(k−1)
t

)
− φλt

(
β̂λt
))
. (C.127)

Recall that in (C.113) we have L
(k)
t ≤ 2(ρ+−ζ+) (k = 0, 1, . . .). Plugging in this into the right-hand

side of (C.127), we obtain

φλt
(
β

(k)
t

)
− φλt

(
β̂λt
)
≤

(
1− 1

8
· ρ− − ζ−
ρ+ − ζ+︸ ︷︷ ︸

1/κ

)(
φλt
(
β

(k−1)
t

)
− φλt

(
β̂λt
))

=

(
1− 1

8κ

)2 (
φλt
(
β

(k−2)
t

)
− φλt

(
β̂λt
))

...

=

(
1− 1

8κ

)k (
φλt
(
β

(0)
t

)
− φλt

(
β̂λt
))
. (C.128)

Here κ is the condition number defined in (4.4). Now we are ready to characterize the total number

of proximal-gradient steps required to obtain an approximate solution β̃t = β
(k+1)
t that satisfies

ωλt
(
β̃t
)
≤ λt/4 (t = 1, . . . , N − 1), or ωλt

(
β̃
)
≤ εopt (t = N). (C.129)

From Lemma C.2, we have

ωλt
(
β

(k+1)
t

)
≤
(
L

(k+1)
t +(ρ+−ζ+)

)∥∥β(k+1)
t −β(k)

t

∥∥
2
=L

(k+1)
t

(
1+

ρ+−ζ+

L
(k+1)
t

)
∥∥β(k+1)

t −β(k)
t

∥∥
2
.(C.130)

Note that the stopping criterion of the line-search method (Line 7 of Algorithm 2) implies L
(k+1)
t ≥

ρ−−ζ−. Otherwise, we assume that L
(k+1)
t < ρ−−ζ−. Since

∥∥(β(k+1)
t

)
S∗
∥∥

0
≤ s̃ and

∥∥(β(k)
t

)
S∗
∥∥

0
≤ s̃

imply
∥∥(β(k)

t − β
(k+1)
t

)
S∗
∥∥

0
≤ 2s̃, by Lemma 5.1 we have

ψ
L
(k+1)
t ,λt

(
β

(k+1)
t ;β

(k)
t

)

= L̃λt
(
β

(k)
t

)
+∇L̃λt

(
β

(k)
t

)T (
β

(k+1)
t − β(k)

t

)
+
L(k+1)

2

∥∥β(k+1)
t − β(k)

t

∥∥2

2
+ λt

∥∥β(k+1)
t

∥∥
1

< L̃λt
(
β

(k)
t

)
+∇L̃λt

(
β

(k)
t

)T (
β

(k+1)
t − β(k)

t

)
+
ρ− − ζ−

2

∥∥β(k+1)
t − β(k)

t

∥∥2

2
+ λt

∥∥β(k+1)
t

∥∥
1

≤ L̃λt
(
β

(k+1)
t

)
+ λt

∥∥β(k+1)
t

∥∥
1

= φλt
(
β

(k+1)
t

)
,

where the first equality follows from the definition in (3.7), the first inequality is because we assume

L
(k+1)
t < ρ−− ζ−, the second inequality follows from the restricted strong convexity by Lemma 5.1.
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However, this contradicts the stopping criterion φλt
(
β

(k+1)
t

)
≤ ψ

L
(k+1)
t ,λt

(
β

(k+1)
t ;β

(k)
t

)
. Therefore

we have proved L
(k+1)
t ≥ ρ− − ζ−. From (C.130) we have

ωλt
(
β

(k+1)
t

)
≤ L(k+1)

t

(
1 +

ρ+ − ζ+

ρ− − ζ−

)∥∥β(k+1)
t − β(k)

t

∥∥
2

= L
(k+1)
t (1 + κ)

∥∥β(k+1)
t − β(k)

t

∥∥
2
.(C.131)

Moreover, by Lemma C.1 we have

L
(k+1)
t

2

∥∥β(k+1)
t − β(k)

t

∥∥2

2
≤ φλ

(
β

(k)
t

)
− φλ

(
β

(k+1)
t

)
.

Plugging this into the right-hand side of (C.131), we obtain

ωλt
(
β

(k+1)
t

)
≤ (1 + κ)L

(k+1)
t

∥∥β(k+1)
t − β(k)

t

∥∥
2

≤ (1 + κ)

√
2L

(k+1)
t

(
φλt
(
β

(k)
t

)
− φλt

(
β

(k+1)
t

))
.

According to (C.111), the sequence
{
φλt
(
β

(k)
t

)}∞
k=0

decreases monotonically. Therefore, we have

φλt
(
β

(k+1)
t

)
≥ φλt

(
β̂λt
)
, which implies

ωλt
(
β

(k+1)
t

)
≤ (1 + κ)

√
2L

(k+1)
t

(
φλt
(
β

(k)
t

)
− φλt

(
β̂λt
))
. (C.132)

Now we provide an upper bound of the right-hand side of (C.132). Recall that in (C.113) we

have L
(k)
t ≤ 2(ρ+ − ζ+) (k = 0, 1, . . .), and in (C.128) we have φλt

(
β

(k)
t

)
− φλt

(
β̂λt
)
≤
(
1 −

1/(8κ)
)k(

φλt
(
β

(0)
t

)
− φλt

(
β̂λt
))

. Note that we assume
∥∥(β(0)

t

)
S∗
∥∥

0
≤ s̃ and ωλt

(
β

(0)
t

)
≤ λt/2. In

Lemma C.7, we set λ′ = λ = λt and ε = λt/2, then we have

φλt
(
β

(0)
t

)
− φλt

(
β̂λt
)
≤ 21

ρ− − ζ−
λt

2s∗.

Plugging these into the right-hand side of (C.132), we obtain

ωλt
(
β

(k+1)
t

)
≤ (1 + κ)

√
4(ρ+ − ζ+) ·

(
1− 1

8κ

)k 21

ρ− − ζ−
λt

2s∗ = (1 + κ)

√
84κ

(
1− 1

8κ

)k
· λt
√
s∗.

Therefore, for t = 1, . . . , N − 1, to ensure that β
(k+1)
t satisfies ωλt

(
β

(k+1)
t

)
≤ λt/4, it suffices to

make k satisfy

(1 + κ)

√
84κ

(
1− 1

8κ

)k
· λt
√
s∗ ≤ λt/4,

which implies

k ≥ 2 log
(
8
√

21 · √κ(1 + κ) ·
√
s∗
)/

log

(
1− 1

8κ

)
.

Similarly, for t = N , to ensure that β
(k+1)
t satisfies ωλt

(
β(k+1)

)
≤ εopt, k should satisfy

k ≥ 2 log
(
2
√

21 · √κ(1 + κ) ·
√
s∗λt/εopt

)/
log

(
1− 1

8κ

)
.

Therefore we conclude the proof of Theorem 5.5.
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C.9 Proof of Theorem 4.5

Before we lay out the proof, we present a useful lemma. It ensures that the approximate solution

β̃t−1, which is obtained from the (t− 1)-th path following stage, is (λt/2)-suboptimal with respect

to regularization parameter λt, i.e., ωλt
(
β̃t−1

)
≤ λt/2.

Lemma C.8. Let β̃t−1 (t = 1, . . . , N) be the approximate solution obtained from the (t − 1)-th

path following stage (Line 8 of Algorithm 1). If ωλt−1

(
β̃t−1

)
≤ λt−1/4. Under Assumption 4.1 and

Assumption 4.4, we have

ωλt
(
β̃t−1

)
≤ λt/2,

where λt = ηλt−1 with η ∈ [0.9, 1).

Proof. Consider regularization parameter λt−1. Let ξ ∈ ∂
∥∥β̃t−1

∥∥
1

be the subgradient that attains

the minimum in

ωλt−1

(
β̃t−1

)
= min
ξ′∈∂‖β̃t−1‖1

max
β′∈Ω

{(
β̃t−1 − β′

)T
∥∥β̃t−1 − β′

∥∥
1

(
∇L̃λt−1

(
β̃t−1

)
+ λt−1ξ

′
)}

, (C.133)

which implies

ωλt−1

(
β̃t−1

)
= max
β′∈Ω

{(
β̃t−1 − β′

)T
∥∥β̃t−1 − β′

∥∥
1

(
∇L̃λt−1

(
β̃t−1

)
+ λt−1ξ

)}
. (C.134)

Now we consider regularization parameter λt. We have

ωλt
(
β̃t−1

)
= min

ξ′∈∂‖β̃t−1‖1
max
β′∈Ω

{(
β̃t−1 − β′

)T
∥∥β̃t−1 − β′

∥∥
1

(
∇L̃λt

(
β̃t−1

)
+ λtξ

′
)}

≤ max
β′∈Ω

{(
β̃t−1 − β′

)T
∥∥β̃t−1 − β′

∥∥
1

(
∇L̃λt

(
β̃t−1

)
+ λtξ

)}
, (C.135)

where ξ is defined as the minimizer of (C.133). Recall that ∇L̃λt
(
β̃t−1

)
= ∇L

(
β̃t−1

)
+∇Qλt

(
β̃t−1

)
.

We have

∇L̃λt
(
β̃t−1

)
+ λtξ =

(
∇L
(
β̃t−1

)
+∇Qλt−1

(
β̃t−1

)
+ λtξ

)
+
(
λt−1ξ − λtξ

)

+
(
∇Qλt

(
β̃t−1

)
−∇Qλt−1

(
β̃t−1

))
.

Plugging this into the right-hand side of (C.135), we obtain

ωλt
(
β̃t−1

)
≤max
β′∈Ω

{(
β̃t−1 − β′

)T
∥∥β̃t−1 − β′

∥∥
1

(
∇L̃λt−1

(
β̃t−1

)
+ λt−1ξ

)}

︸ ︷︷ ︸
(i)

+ max
β′∈Ω

{(
β̃t−1 − β′

)T
∥∥β̃t−1 − β′

∥∥
1

(
λt−1ξ − λtξ

)
}

︸ ︷︷ ︸
(ii)

+ max
β′∈Ω

{(
β̃t−1 − β′

)T
∥∥β̃t−1 − β′

∥∥
1

(
∇Qλt

(
β̃t−1

)
−∇Qλt−1

(
β̃t−1

))
}

︸ ︷︷ ︸
(iii)

. (C.136)
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According to (C.134), term (i) in (C.136) is equal to ωλt−1

(
β̃t−1

)
, which is upper bounded by λt−1/4

by our assumption. For term (ii) in (C.136), we have

max
β′∈Ω

{(
β̃t−1 − β′

)T
∥∥β̃t−1 − β′

∥∥
1

(
λt−1ξ − λtξ

)
}
≤ max

β′∈Rd

{(
β̃t−1 − β′

)T
∥∥β̃t−1 − β′

∥∥
1

(
λt−1ξ − λtξ

)
}

=
∥∥λt−1ξ − λtξ

∥∥
∞

≤ λt−1 − λt,

where first inequality is due to the duality between `1 and `∞ norm, while the second inequality

is due to the fact that λt−1 > λt and ‖ξ‖∞ ≤ 1, which follows from ξ ∈ ∂
∥∥β̃t−1

∥∥
1
. Similarly, for

term (iii) we have

max
β′∈Ω

{(
β̃t−1 − β′

)T
∥∥β̃t−1 − β′

∥∥
1

(
∇Qλt

(
β̃t−1

)
−∇Qλt−1

(
β̃t−1

))
}
≤

∥∥∇Qλt
(
β̃t−1

)
−∇Qλt−1

(
β̃t−1

)∥∥
∞

= max
1≤j≤d

∣∣∣q′λt
(
(β̃t−1)j

)
− q′λt−1

(
(β̃t−1)j

)∣∣∣
≤ λt−1 − λt,

where the second inequality follows from regularity condition (e). Hence, from (C.136) we obtain

ωλt
(
β̃t−1

)
≤ λt−1/4︸ ︷︷ ︸
(i) in (C.136)

+ λt−1 − λt︸ ︷︷ ︸
(ii) in (C.136)

+ λt−1 − λt︸ ︷︷ ︸
(iii) in(C.136)

≤
(
1/(4η) + 1/η − 1 + 1/η − 1

)
λt ≤ λt/2,

where the last inequality is obtained by plugging in η ∈ [0.9, 1). Hence we conclude the proof.

Now we are ready to prove Theorem 4.5.

Proof. Geometric Rate of Convergence within Each Stage: The stopping criterion of Algo-

rithm 3 (Line 9) implies

ωλt−1

(
β̃t−1

)
≤ λt−1/4, for t = 1, . . . , N.

By Lemma C.8 we have

ωλt
(
β̃t−1

)
≤ λt/2, for t = 1, . . . , N. (C.137)

Recall that we initialize the t-th stage with β̃t−1 = β0
t and Lt−1 = L

(0)
t (Line 8 of Algorithm 1).

By Theorem 5.5, as long as
∥∥(β̃t−1

)
S∗
∥∥

0
≤ s̃ and L(t−1) ≤ 2(ρ+ − ζ+), we have

∥∥(β(k)
t

)
S∗
∥∥

0
≤ s̃, L

(k)
t ≤ 2(ρ+ − ζ+), for k = 1, 2, . . . ,

which implies
∥∥(β̃t

)
S∗
∥∥

0
≤ s̃ and Lt ≤ 2(ρ+−ζ+). Recall that we initialize the entire path following

procedure with β̃0 = 0 and L0 = Lmin ≤ 2(ρ+ − ζ+) (Line 4 of Algorithm 1). By induction we

obtain

∥∥(β̃t
)
S∗
∥∥

0
≤ s̃, Lt ≤ 2(ρ+ − ζ+), for t = 1, . . . , N.
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By setting λ = λt and β̃ = β̃t (t = 1, . . . , N) in Theorem 5.5, we obtain that, within the t-th stage

(t = 1, . . . , N − 1), the total number of proximal-gradient iterations is no more than

2 log
(
8
√

21 · √κ(1 + κ) ·
√
s∗
)/

log

(
1

1− 1/(8κ)

)
,

while within the N -th stage, the total number of proximal-gradient steps is no more that

2 log
(
2
√

21 · √κ(1 + κ) ·
√
s∗λtgt/εopt

)/
log

(
1

1− 1/(8κ)

)
.

Hence we obtain the first conclusion.

Geometric Rate of Convergence over the Full Path: Now we prove the second statement

about the total number of proximal-gradient steps along the entire solution path. The total number

of path following stages is

N = log(λtgt/λ0)/log η.

Together with the first result, we have that the total number of proximal-gradient steps is no more

than

(N − 1)C ′ log
(
4C
√
s∗
)

+ C ′ log
(
C
√
s∗λtgt/εopt

)
.

where

C = 2
√

21 · √κ(1 + κ), C ′ = 2

/
log

(
1

1− 1/(8κ)

)
.

Geometric Rate of Convergence of the Objective Function Values: Now we prove the

third statement concerning the objective function value. For t = 1, . . . , N − 1, by (C.137) we have

ωλt+1

(
β̃t
)
≤ λt+1/2. Setting λ′ = λtgt, λ = λt+1, β = β̃t and ε = λt+1/2 in Lemma C.7, we obtain

φλtgt
(
β̃t
)
− φλtgt

(
β̂λtgt

)
≤ 21

ρ− − ζ−
(
λt+1/2 + 2(λt+1 − λtgt)

)
· (λtgt + λt+1)s∗.

Since λtgt ≤ λt+1, we have

φλtgt
(
β̃t
)
− φλtgt

(
β̂λtgt

)
≤ 21

ρ− − ζ−
(
λt+1/2 + 2λt+1

)
· 2λt+1s

∗ =
105 · λ2

t+1s
∗

ρ− − ζ−
.

Since λt+1 = ηt+1λ0, we obtain

φλtgt
(
β̃t
)
−φλtgt

(
β̂λtgt

)
≤ η2(t+1) 105 · λ2

0s
∗

ρ− − ζ−
, for t = 1, . . . , N−1.

Similarly, for t = N , we have ωλtgt
(
β̃N
)
≤ εopt. By setting λ = λ′ = λtgt and ε = εopt in Lemma

C.7, we have

φλtgt
(
β̃t
)
− φλtgt

(
β̂λtgt

)
≤ 21 · λtgts

∗

ρ− − ζ−
εopt.

Therefore we conclude the proof of Theorem 4.5.
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C.10 Proof of Theorem 4.7

Proof. Recall that β̃t is the approximate local solution obtained from the t-th path following stage

(Lines 8 and 12 of Algorithm 1). Hence it satisfies the stopping criterion of the proximal-gradient

method (Line 9 of Algorithm 3), i.e., for t = 1, . . . , N − 1 we have ωλt
(
β̃t
)
≤ λt/4 < λt/2, while for

t = N we have ωλt
(
β̃t
)
≤ εopt � λtgt/4 < λt/2. Meanwhile, by (5.2) in Theorem 5.5, β̃t satisfies∥∥(β̃t

)
S∗
∥∥

0
≤ s̃. For logistic loss, we further have ‖β̃t‖2 ≤ R due to the `2 constraint. Therefore

Lemma 5.2 gives

∥∥β̃t − β∗
∥∥

2
≤ 21/8

ρ− − ζ−
λt
√
s∗, for t = 1, . . . , N,

which concludes the proof.

C.11 Proof of Theorem 4.8

Proof. We denote the subgradients by ξ∗ ∈ ∂‖β∗‖1 and ξ̂ ∈ ∂
∥∥β̂λt

∥∥
1
. In particular, we set ξ̂ to be

the subgradient that attains the minimum in

ωλt
(
β̂λt
)

= min
ξ′∈∂‖β̂λt‖1

max
β′∈Ω

{(
β̂λt − β′

)T
∥∥β̂λt − β′

∥∥
1

(
∇L̃λ

(
β̂λt
)

+ λξ′
)}

.

Recall that β̂λt satisfies the exact optimality condition that ωλt
(
β̂λt
)
≤ 0, hence we have

max
β′∈Ω

{(
β̂λt − β′

)T(∇L̃λt
(
β̂λt
)

+ λtξ̂
)}
≤ 0. (C.138)

By Theorem 5.5 we have
∥∥(β̂λt

)
S∗
∥∥

0
≤ s̃. Since

∥∥(β̂λt −β∗
)
S∗
∥∥

0
≤ s̃, according to Lemma 5.1 the

restricted convexity holds for L̃λt(β) at βt and β∗, i.e.,

L̃λt
(
β̂λt
)
≥ L̃λt(β∗) +∇L̃λt(β∗)T

(
β̂λt − β∗

)
+
ρ− − ζ−

2

∥∥β̂λt − β∗
∥∥2

2
, (C.139)

L̃λt(β∗) ≥ L̃λt
(
β̂λt
)

+∇L̃λt
(
β̂λt
)T (

β∗ − β̂λt
)

+
ρ− − ζ−

2

∥∥β∗ − β̂λt
∥∥2

2
. (C.140)

Meanwhile, by the convexity of `1 norm, we have

λt
∥∥β̂λt

∥∥
1
≥ λt‖β∗‖1 + λt

(
β̂λt − β∗

)T
ξ∗, (C.141)

λt‖β∗‖1 ≥ λt
∥∥β̂λt

∥∥
1

+ λt
(
β∗ − β̂λt

)T
ξ̂. (C.142)

Recall that L̃λ(β) = L(β) +Qλ(β). Adding (C.139)−(C.142), we obtain

0 ≥
(
∇L(β∗) +∇Qλt(β∗) + λtξ

∗
)T (

β̂λt − β∗
)

︸ ︷︷ ︸
(i)

+
(
∇L̃λt

(
β̂λt
)

+ λtξ̂
)T (

β∗ − β̂λt
)

︸ ︷︷ ︸
(ii)

+(ρ− − ζ−)
∥∥β̂λt − β∗

∥∥2

2
. (C.143)
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According to (C.138) we have

(
∇L̃λt

(
β̂λt
)

+ λtξ̂
)T (

β̂λt − β∗
)
≤ max
β′∈Ω

{(
β̂λt − β′

)T(∇L̃λt
(
β̂λt
)

+ λξ̂
)}
≤ 0,

which implies that term (ii) in (C.143) is nonnegative. Moving term (i) in (C.143) to its left-hand

side, we obtain

(ρ− − ζ−)
∥∥β̂λt − β∗

∥∥2

2
≤
(
∇L(β∗) +∇Qλt(β∗) + λtξ

∗)T (β̂λt − β∗
)

≤ min
ξ∗∈∂‖β∗‖1

{ d∑

j=1

∣∣∣
(
∇L(β∗) +∇Qλt(β∗) + λtξ

∗)
j

∣∣∣ ·
∣∣∣
(
β∗ − β̂λt

)
j

∣∣∣
}
.(C.144)

In the following, we decompose the summation in (C.144) into three parts: j ∈ S∗, j ∈ S∗1 and

j ∈ S∗2 , where S∗1 = {j : |βj | ≥ νt} and S∗2 = {j : |βj | < νt}. Here νt > 0 is defined in (4.16).

• For j ∈ S∗, according to regularity condition (c), we have

(
∇Qλt(β∗)

)
j

= q′λt(β
∗
j ) = q′λt(0) = 0, for j ∈ S∗.

By (4.1) in Assumption 4.1, we have

max
j∈S∗

∣∣∣
(
∇L(β∗)

)
j

∣∣∣ ≤ max
1≤j≤d

∣∣∣
(
∇L(β∗)

)
j

∣∣∣ = ‖∇L(β∗)‖∞ ≤ λtgt/8 ≤ λt/8 < λt.

Hence we have

max
j∈S∗

∣∣∣
(
∇L(β∗) +Qλt(β∗)

)
j

∣∣∣ ≤ λt.

Meanwhile, since ξ∗ ∈ ∂‖β∗‖1, we have λtξ
∗
j ∈ [−λt, λt]. Therefore, for any j ∈ S∗, we can

always find a ξ∗j such that

∣∣∣
(
∇L(β∗) +∇Qλt(β∗)

)
j

+ λtξ
∗
j

∣∣∣ = 0,

which implies

min
ξ∗∈∂‖β∗‖1

{∣∣∣
(
∇L(β∗) +∇Qλt(β∗) + λtξ

∗)
j

∣∣∣
}

= 0, for j ∈ S∗.

Thus we obtain

min
ξ∗∈∂‖β∗‖1

{ ∑

j∈S∗

∣∣∣
(
∇L(β∗) +∇Qλt(β∗) + λtξ

∗)
j

∣∣∣ ·
∣∣∣
(
β∗ − β̂λt

)
j

∣∣∣
}

= 0. (C.145)

• For j ∈ S∗1 ⊆ S∗, we have |β∗j | ≥ νt. Recall that Pλ(β) = Qλ(β) +λ‖β‖1. By our assumption

on Pλt(β) in (4.16), we have

(
∇Qλt(β∗) + λtξ

∗)
j

= p′λt(β
∗
j ) = 0, for j ∈ S∗1 ,
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which implies

min
ξ∗∈∂‖β∗‖1

{∑

j∈S∗1

∣∣∣
(
∇L(β∗) +∇Qλt(β∗) + λtξ

∗)
j

∣∣∣ ·
∣∣∣
(
β∗ − β̂λt

)
j

∣∣∣
}

=
∑

j∈S∗1

∣∣∣
(
∇L(β∗)

)
j

∣∣∣ ·
∣∣∣
(
β∗ − β̂λt

)
j

∣∣∣

≤
∥∥(∇L(β∗)

)
S∗1

∥∥
2
·
∥∥β∗ − β̂λt

∥∥
2
. (C.146)

• For j ∈ S∗2 ⊆ S∗, we have |β∗j | < νt. By (4.1) in Assumption 4.1, we have

max
j∈S∗2

∣∣∣
(
∇L(β∗)

)
j

∣∣∣ ≤ max
1≤j≤d

∣∣∣
(
∇L(β∗)

)
j

∣∣∣ = ‖∇L(β∗)‖∞ ≤ λt/8 ≤ λt/8.

Meanwhile we have

max
j∈S∗2

∣∣∣
(
∇Qλt(β∗)

)
j

∣∣∣ = max
j∈S∗2

∣∣q′λt(β∗j )
∣∣ ≤ max

1≤j≤d

∣∣q′λt(β∗j )
∣∣ ≤ λt,

where the last inequality follows from regularity condition (d). Also, since ξ∗ ∈ ∂‖β∗‖1, we

have |ξ∗j | ≤ 1. Therefore we obtain that, for j ∈ S∗2 ,

∣∣∣
(
∇L(β∗) +∇Qλt(β∗) + λtξ

∗)
j

∣∣∣ ≤ max
j∈S∗2

∣∣∣
(
∇L(β∗)

)
j

∣∣∣+ max
j∈S∗2

∣∣∣
(
∇Qλt(β∗)

)
j

∣∣∣+ λt ≤ 3λt.

which implies

min
ξ∗∈∂‖β∗‖1

{ ∑

j∈S∗2

∣∣∣
(
∇L(β∗) +∇Qλt(β∗) + λtξ

∗)
j

∣∣∣ ·
∣∣∣
(
β∗ − β̂λt

)
j

∣∣∣
}
≤ 3λt

∑

j∈S∗2

∣∣∣
(
β∗ − β̂λt

)
j

∣∣∣

= 3λt
∥∥(β∗ − β̂λt

)
S∗2

∥∥
1
≤ 3λt

√
s∗
∥∥(β∗ − β̂λt

)
S∗2

∥∥
2
≤ 3λt

√
s∗2
∥∥β∗ − β̂λt

∥∥
2
. (C.147)

Plugging (C.145)−(C.147) into the right-hand side of (C.144), we obtain

∥∥β̂λt − β∗
∥∥

2
≤ 1

ρ− − ζ−

(∥∥(∇L(β∗)
)
S∗1

∥∥
2

+ 3λt
√
s∗2
)
,

which concludes the proof of Theorem 4.8.

C.12 Proof of Lemma 4.9 and Theorem 4.10

First we prove Lemma 4.9, which states that the oracle estimator β̂O is uniquely defined and has

some nice statistical recovery property.

Proof. To prove that the global minimizer of (4.19) is unique even for nonconvex loss functions, in

the following we show that L(β) is actually strongly convex on the sparse set {β : supp (β) ⊆ S∗}.
Assume that β and β′ satisfy supp(β) ⊆ S∗ and supp(β′) ⊆ S∗. By Taylor’s theorem and the

mean value theorem, we have

L(β′) = L(β) +∇L(β)T (β′ − β) +
1

2
(β′ − β)T∇2L

(
γβ′ + (1− γ)β

)
(β′ − β), (C.148)
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where γ ∈ [0, 1]. Note that we have ‖β′−β‖0 = s∗ < s∗+ 2s̃. By Definition 4.2 and Definition 4.3,

we have
(β′ − β)T

‖β′ − β‖2
∇2L

(
γβ + (1− γ)β′

) (β′ − β)

‖β′ − β‖2
≥ ρ−

(
∇2L, s∗ + 2s̃

)
.

Plugging this into the right-hand side of (C.148), we obtain

L(β′) ≥ L(β) +∇L(β)T (β′ − β) +
ρ−
2
‖β′ − β‖22, (C.149)

where ρ− = ρ−
(
∇2L, s∗+2s̃

)
is a positive constant according to Assumption 4.4. Note that (C.149)

holds for any β and β′ such that supp(β) ⊆ S∗ and supp(β′) ⊆ S∗. Therefore, L(β) is strongly

convex on this sparse set, which implies the minimizer of (4.19) is unique.

Now we prove the statistical recovery property of the oracle estimator β̂O in the setting where

L(β) is least squares loss. Let β̂′O,β
∗′ ∈ Rs∗ be the restrictions of β̂O,β

∗ ∈ Rd to S∗ respectively,

and XS∗ ∈ Rn×s∗ be a new matrix containing the columns of X, i.e., Xj , that satisfy j ∈ S∗. Since

β̂′O is the solution to the ordinary least squares problem

β̂′O = argmin
β′∈Rs∗

1

2n
‖XS∗β

′ − y‖22,

it has the closed-form expression of

β̂′O = (XT
S∗XS∗)

−1XT
S∗y.

Here we still need to prove that XT
S∗XS∗ ∈ Rs∗×s∗ is invertible. Note that the smallest eigenvalue

of XT
S∗XS∗ is defined as

Λmin

(
XT
S∗XS∗

)
= inf

{
vTXT

S∗XS∗v : ‖v‖2 = 1, v ∈ Rs
∗
}
,

which satisfies

Λmin

(
XT
S∗XS∗

)
= inf

{
vTXTXv : ‖v‖2 = 1, v ∈ Rd, supp(v) = S∗

}

≥ inf
{
vTXTXv : ‖v‖2 = 1, v ∈ Rd, ‖v‖0 ≤ s∗

}

≥ inf
{
vTXTXv : ‖v‖2 = 1, v ∈ Rd, ‖v‖0 ≤ s∗ + 2s̃

}

= nρ−
(
∇2L, s∗ + 2s̃

)
(C.150)

> 0.

Here the first and second inequality are due to {v : supp(v) = S∗} ⊆ {v : ‖v‖0 ≤ s∗} ⊆ {v : ‖v‖0 ≤
s∗+2s̃}, while the second equality follows from Definition 4.2, because in the setting of least squares

loss∇2L(β) = XTX/n, and the last inequality follows from Assumption 4.4. Therefore the smallest

eigenvalue of XT
S∗XS∗ is positive, which implies that XT

S∗XS∗ is invertible.

By our assumption on (Y |X = xi), we have y = Xβ∗+ ε = XS∗β
∗′+ ε, where ε ∈ Rn is a zero

mean sub-Gaussian random vector with independent entries and variance proxy σ2. Therefore, we

have

β̂′O − β∗′ = (XT
S∗XS∗)

−1XT
S∗y − β∗′ = (XT

S∗XS∗)
−1XT

S∗(Xβ
∗ + ε)− β∗′ = (XT

S∗XS∗)
−1XT

S∗ε.
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Now we provide an upper bound of
∥∥β̂′O−β∗′

∥∥
∞. Note that the j-th entry of (XT

S∗XS∗)
−1XT

S∗ε ∈
Rs∗ can be denoted as ej(X

T
S∗XS∗)

−1XT
S∗ε. Here ej ∈ Rs∗ denotes a vector that is all-zero expect

an “1” in its j-th coordinate. For any j, ej(X
T
S∗XS∗)

−1XT
S∗ε is a sub-Gaussian random variable

with variance proxy
∥∥ej(XT

S∗XS∗)
−1XT

S∗
∥∥2

2
σ2. Therefore we have

P
(∣∣ej(XT

S∗XS∗)
−1XT

S∗ε
∣∣ > t

)
≤ 2 exp

(
−t2
/(∥∥ej(XT

S∗XS∗)
−1XT

S∗
∥∥2

2
σ2
))
,

which implies

P
(

max
j∈{1,...,s∗}

∣∣ej(XT
S∗XS∗)

−1XT
S∗ε
∣∣ > t

)
≤ 2s∗ exp

(
−t2
/(

max
j∈{1,...,s∗}

∥∥ej(XT
S∗XS∗)

−1XT
S∗
∥∥2

2
σ2
))

.

Taking t = C maxj∈{1,...,s∗}
∥∥ej(XT

S∗XS∗)
−1XT

S∗
∥∥

2
σ · √2 log s∗ with C > 0, we have that

∥∥β̂′O − β∗′
∥∥
∞ =

∥∥(XT
S∗XS∗)

−1XT
S∗ε
∥∥
∞ = max

j∈{1,...,s∗}

∣∣ej(XT
S∗XS∗)

−1XT
S∗ε
∣∣

≤ C max
j∈{1,...,s∗}

∥∥ej(XT
S∗XS∗)

−1XT
S∗
∥∥

2
σ ·
√

2 log s∗ (C.151)

holds with probability at least 1 − 2 exp(−C2)/s∗. In other words, there exists a constant C > 0

sufficiently large such that (C.151) holds with high probability. Note that, for any j ∈ {1, . . . , d}
∥∥ej(XT

S∗XS∗)
−1XT

S∗
∥∥2

2
= ej(X

T
S∗XS∗)

−1XT
S∗XS∗(X

T
S∗XS∗)

−1eTj = ej(X
T
S∗XS∗)

−1eTj

≤ Λmax

(
(XT

S∗XS∗)
−1
)

= 1/Λmin

(
XT
S∗XS∗

)

≤ 1/(nρ−),

where the last inequality follows from (C.150). Plugging this into (C.151), we obtain

∥∥β̂′O − β∗′
∥∥
∞ ≤ Cσ

√
2/ρ− ·

√
log s∗

n
.

Recall that β̂′O and β∗′ are the restrictions of β̂O and β∗ to S∗, and supp
(
β̂O

)
⊆ S∗. Therefore we

obtain
∥∥β̂O − β∗

∥∥
∞ ≤ Cσ

√
2/ρ− ·

√
log s∗

n
,

which concludes the proof.

Now we prove Theorem 4.10.

Proof. Let ξ̂ ∈ ∂
∥∥β̂λt

∥∥
1
. We set ξ̂ to be the subgradient that attains the minimum in

ωλt
(
β̂λt
)

= min
ξ′∈∂‖β̂λt‖1

max
β′∈Ω

{(
β̂λt − β′

)T
∥∥β̂λt − β′

∥∥
1

(
∇L̃λ

(
β̂λt
)

+ λξ′
)}

.

Since β̂λt satisfies the exact optimality condition that ωλt
(
β̂λt
)
≤ 0, we have

max
β′∈Ω

{(
β̂λt − β′

)T(∇L̃λt
(
β̂λt
)

+ λtξ̂
)}
≤ 0. (C.152)
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Now we prove there exists some ξO ∈ ∂
∥∥β̂O

∥∥
1

such that β̂O satisfies the exact optimality condition

max
β′∈Ω

{(
β̂O − β′

)T(∇L̃λt
(
β̂O

)
+ λtξO

)}
≤ 0. (C.153)

Recall that L̃λ(β) = L(β) +Qλ(β). In (C.153), we have

(
β̂O − β′

)T(∇L̃λt
(
β̂O

)
+ λtξO

)

=
(
β̂O − β′

)T(∇L
(
β̂O

)
+∇Qλt

(
β̂O

)
+ λtξO

)

=
∑

1≤j≤d

(
β̂O − β′

)
j

(
∇Qλt

(
β̂O

)
+ λtξO

)
j

︸ ︷︷ ︸
(i)

+
(
β̂O − β′

)T∇L
(
β̂O

)
︸ ︷︷ ︸

(ii)

. (C.154)

For term (i) in (C.154), we decompose the summation into two parts: j ∈ S∗ and j ∈ S∗.

• For j ∈ S∗, since
(
β̂O

)
j

= 0, by regularity condition (c) we have

(
∇Qλt

(
β̂O

))
j

= 0.

Note that ξO ∈ ∂
∥∥β̂O

∥∥
1
. By setting (ξO)j = 0 for j ∈ S∗, we obtain

∑

j∈S∗

(
β̂O − β′

)
j

(
∇Qλt

(
β̂O

)
+ λtξO

)
j

= 0.

• For j ∈ S∗, by assumption we have
∣∣(β̂O

)
j

∣∣ > νt. Recall that Pλ(β) = Qλ(β) + λ‖β‖1. Thus

we have (
∇Qλt

(
β̂O

)
+ λtξO

)
j

=
(
∇Pλt

(
β̂O

))
j

= p′λt

((
β̂O

)
j

)
= 0,

where the second equality follows from our assumption in (4.16).

Therefore, as long as ξO ∈ ∂
∥∥β̂O

∥∥
1

satisfies (ξO)j = 0 for j ∈ S∗, term (i) is always zero for any β′.

For term (ii) in (C.154), note that β̂O is the global solution to the minimization problem in

(4.19). Hence β̂O satisfies the exact optimality condition

max
β′∈Ω

{(
β̂O − β′

)T∇L
(
β̂O

)}
≤ 0.

Therefore, taking maximum over β′ ∈ Ω on both sides of (C.154), we obtain (C.153).

Now we are ready to prove that β̂λt = β̂O. Note that the oracle estimator satisfies supp(β̂O) ⊆
S∗. Meanwhile, by Theorem 5.5 we have

∥∥(β̂λt
)
S∗
∥∥

0
≤ s̃. Hence we have

∥∥(β̂λt − β̂O

)
S∗
∥∥

0
≤ s̃.

Therefore Lemma 5.1 yields

L̃λt
(
β̂λt
)
≥ L̃λt

(
β̂O

)
+∇L̃λt

(
β̂O

)T (
β̂λt − β̂O

)
+
ρ− − ζ−

2

∥∥β̂λt − β̂O

∥∥2

2
, (C.155)

L̃λt
(
β̂O

)
≥ L̃λt

(
β̂λt
)

+∇L̃λt
(
β̂λt
)T (

β̂O − β̂λt
)

+
ρ− − ζ−

2

∥∥β̂O − β̂λt
∥∥2

2
. (C.156)
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Meanwhile, by the convexity of `1 norm, we have

λt
∥∥β̂λt

∥∥
1
≥ λt

∥∥β̂O

∥∥
1

+ λt
(
β̂λt − β̂O

)T
ξO, (C.157)

λt
∥∥β̂O

∥∥
1
≥ λt

∥∥β̂λt
∥∥

1
+ λt

(
β̂O − β̂λt

)T
ξ̂. (C.158)

Adding (C.155)−(C.158), we obtain

0 ≥
(
∇L̃λt

(
β̂λt
)

+ λtξ̂
)T (

β̂O − β̂λt
)

︸ ︷︷ ︸
(i)

+
(
∇L̃λt

(
β̂O

)
+ λtξO

)T (
β̂λt − β̂O

)
︸ ︷︷ ︸

(ii)

+(ρ− − ζ−)
∥∥β̂λt − β̂O

∥∥2

2
.

According to (C.152), we have

(
β̂λt − β̂O

)T(∇L̃λt
(
β̂λt
)

+ λtξ̂
)
≤ max
β′∈Ω

{(
β̂λt − β′

)T(∇L̃λt
(
β̂λt
)

+ λtξ̂
)}
≤ 0,

which implies term (i) is nonnegative. Similarly, according to (C.153), term (ii) is also nonnegative.

Hence we have (ρ−− ζ−)
∥∥β̂λt − β̂O

∥∥2

2
≤ 0. By (4.5) we have ρ−− ζ− > 0, which implies β̂λt = β̂O.

Thus we conclude that β̂λt is the oracle estimator β̂O, which exactly recovers the support of β∗.

D Theoretical Results about Semiparametric Elliptical Design Re-

gression

In this section, we first introduce the Catoni’s M -estimator of standard deviation, then we provide

the detailed proofs of some necessary results regarding semiparametric elliptical design regression1.

D.1 Catoni’s M-Estimator of Standard Deviation

Catoni (2012) proposed a novel method to estimate the mean and standard deviation of heavy-tail

distributions. Let Z = (Z1, . . . , Zd+1) be the elliptically distributed random vector defined in §2.2.

We consider the estimator of the marginal mean E(Zj) (j = 1, . . . , d + 1). Let h : R → R be a

continuous strictly increasing function satisfying

− log(1− x+ x2/2) ≤ h(x) ≤ log(1 + x+ x2/2).

For instance, we choose h(·) to be

h(x) =

{
log(1 + x+ x2/2), if x ≥ 0,

− log(1− x+ x2/2), otherwise.

Let δ ∈ (0, 1) be such that n ≥ 2 log(1/δ). We introduce

aδ =

√
2 log(1/δ)

/(
nv +

2nv log(1/δ)

n− 2 log(1/δ)

)
, (D.1)

1§D.1, Lemma D.1 and Corollary D.2 come from an unpublished internal technical report. We provide them here

for completeness.
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where v is an upper bound of Var(Zj) for all j. Catoni’s estimator of E(Zj) is defined as µ̂j = µ̂j(n, δ)

such that

n∑

i=1

h
(
αδ(zi,j − µ̂j)

)
= 0, j = 1, . . . , d+ 1, (D.2)

where zi,j is the i-th (i = 1, . . . , n) realizations of Zj . As h(·) is differentiable everywhere, we can

solve (D.2) with Newton’s method efficiently. Similarly we can estimate E(Z2
j ) with m̂j defined in

a similar way. Then we obtain an estimator of the marginal standard deviation σj

σ̂j =
√
m̂j − µ̂2

j , j = 1, . . . , d+ 1. (D.3)

D.2 Proof of Lemma C.5

To establish results concerning the smallest sparse eigenvalue for K̂X , we need to prove several

concentration results. The next lemma and proposition provide the concentration inequality for

Catoni’s estimator of marginal standard deviation, which is defined in (D.3). We first consider the

estimator of variance in the following lemma.

Lemma D.1. Let X = (X1, . . . , Xd)
T be a random vector and x1, . . . ,xn be n independent real-

izations of X with Var(Xj) = vj and E
(
X4
j

)
≤M , for j = 1, . . . , d. We assume that

max
1≤j≤d

{
|E(Xj)|

}
≤ µmax, vmax = max

1≤j≤d

{
vj
}
.

For the estimator v̂j = m̂j − µ̂2
j with m̂j and µ̂j defined in (D.2), if n > 5 log d, we have, with

probability at least 1− 2d−3,

max
1≤j≤d

{∣∣vj − v̂j
∣∣
}
≤ C

√
log d

n
,

where C is a constant.

Proof. For j ∈ {1, . . . , d}, we use m̂j to estimate E
(
X2
j

)
. Catoni (2012) showed that

P
(∣∣m̂j − E

(
X2
j

)∣∣ > t
)
≤ exp

(
− nt2

M

)
.

Taking a union bound, we have

P
(

max
1≤j≤d

{∣∣m̂j − E
(
X2
j

)∣∣
}
> t
)
≤ d exp

(
− nt2

M

)
,

or equivalently, with probability at least 1− d−3,

max
1≤j≤d

{∣∣m̂j − E
(
X2
j

)∣∣
}
≤ 2
√
M

√
log d

n
. (D.4)

Meanwhile, we use µ̂j to estimate E(Xj). By similar arguments as above, we have

max
1≤j≤d

{∣∣µ̂j − E(Xj)
∣∣
}
≤ 2
√
vmax

√
log d

n
(D.5)
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with probability at least 1− d−3.

Note that

max
1≤j≤d

{∣∣∣µ̂2
j −

(
E(Xj)

)2∣∣∣
}
≤ max

1≤j≤d

{∣∣µ̂j − E(Xj)
∣∣
}
· max

1≤j≤d

{∣∣µ̂j + E(Xj)
∣∣
}
.

Since we assume that max1≤j≤d
{
E(Xj)

}
≤ µmax, we have

max
1≤j≤d

{∣∣∣µ̂2
j −

(
E(Xj)

)2∣∣∣
}
≤
(

4µmax + 4
√
vmax

√
log d

n

)
· √vmax

√
log d

n
(D.6)

with probability at least 1− d−3. Since log d/n < 1, from (D.6) we have,

max
1≤j≤d

{∣∣∣µ̂2
j −

(
E(Xj)

)2∣∣∣
}
≤ (4µmax + 4

√
vmax) · √vmax

√
log d

n
. (D.7)

Combining (D.4) and (D.7), we have, with probability at least 1− 2d−3,

max
1≤j≤d

{∣∣m̂j − µ̂2
j −Var(Xj)

∣∣
}
≤ C

√
log d

n
,

where C = 2
√
M +

(
4µmax + 4

√
vmax

)√
vmax.

We use σ̂j =
√
v̂j to estimate σj =

√
vj . Using Lemma D.1, we derive a concentration inequality

for σ̂j in the following corollary.

Corollary D.2. Let σj =
√
vj and σ̂j =

√
v̂j for j = 1, ..., d. By assuming σj ≥ σmin > 0 for all

j = 1, ..., d, we have, with probability at least 1− 2d−3,

max
1≤j≤d

{
|σj − σ̂j |

}
≤ C

√
log d

n
,

where C is a constant.

Proof. By Lemma D.1, we have, with probability at least 1− 2d−3,

max
1≤j≤d

{
|vj − v̂j |

}
≤ C

√
log d

n
.

Since |vj − v̂j | = |σj − σ̂j | · |σj + σ̂j |, it follows that

max
1≤j≤d

{
|σj − σ̂j |

}
≤ C

min1≤j≤d
{
|σj + σ̂j |

}
√

log d

n
≤ C

σmin

√
log d

n
.

As we assume that σj > σmin for all j, we conclude the proof.

Before we establish the sparse eigenvalue condition for K̂X , we provide a concentration result

of R̂X in the following lemma.
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Lemma D.3 (Han and Liu (2013)). Let x1, . . . ,xn be n realizations of a random vector X ∼
ECd(0,ΣX ,Ξ) as in Definition 2.1. We assume that the smallest eigenvalue of the generalized

correlation matrix Σ0
X is strictly positive. Under the sign sub-Gaussian condition (See Han and

Liu (2013) for more details), the correlation matrix estimator R̂X defined in (2.6) satisfies that,

with probability at least 1− 2d−1 − d−2,

sup
‖v‖0≤s





∣∣∣vT
(
R̂X −Σ0

X

)
v
∣∣∣

‖v‖22



 ≤ C

√
s log d

n

for s ∈ {1, . . . , d} and a sufficiently large n.

We now prove Lemma C.5.

Proof. Let D = diag(σ1, . . . , σd) and D̂ = diag(σ̂1, . . . , σ̂d). First we consider the smallest sparse

eigenvalue, which satisfies

ρ−
(
∇2L, s

)
= inf

‖v‖0≤s

{
vT K̂Xv

‖v‖22

}

= inf
‖v‖0≤s

{(
D̂v
)T

R̂X

(
D̂v
)

∥∥D̂v
∥∥2

2

·
∥∥D̂v

∥∥2

2

‖v‖22

}

≥ inf
‖v‖0≤s

{
vT R̂Xv

‖v‖22

}
· min

1≤j≤d

{
σ̂j
}
. (D.8)

The first term on the right-hand side of (D.8) is the smallest sparse eigenvalue of R̂X . Since we

have from Lemma D.3 that, with probability at least 1− 2d−1 − d−2,

sup
‖v‖0≤s





∣∣∣vT
(
R̂X −Σ0

X

)
v
∣∣∣

‖v‖22



 ≤ C

√
s log d

n
.

Then for a sufficiently large n, we have

vT
(
Σ0
X − R̂X

)
v ≤ C

√
s log d

n
≤ 1

2
Λmin

(
Σ0
X

)
, for ‖v‖0 ≤ s.

Here Λmin

(
Σ0
X

)
denotes the smallest eigenvalue of Σ0

X , which is strictly positive by assumption.

Then we obtain

1

2
Λmin

(
Σ0
X

)
≤ vTΣ0

Xv −
1

2
Λmin

(
Σ0
X

)
≤ vT R̂Xv, for ‖v‖0 ≤ s.

Taking infimum over both sides, we get

inf
‖v‖0≤s

{
vT R̂Xv

‖v‖22

}
≥ 1

2
Λmin

(
Σ0
X

)
> 0. (D.9)
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We now consider min1≤j≤d
{
σ̂j
}

in (D.8). In Corollary D.2 we prove that, with probability at least

1− 2d−3,

|σj − σ̂j | ≤ C ′
√

log d

n
, for 1 ≤ j ≤ d,

where C ′ is a constant. For a sufficiently large n, we have

σ̂j ≥
1

2
σj > 0, for 1 ≤ j ≤ d

with the same probability. Taking minimum over both sides, we get

min
1≤j≤d

{
σ̂j
}
≥ 1

2
min

1≤j≤d

{
σj
}
> 0 (D.10)

with probability at least 1− 2d−2. Plugging (D.9) and (D.10) into the right-hand side of (D.8), we

reach the conclusion that ρ−
(
∇2L, s

)
> 0.

Now we consider the largest sparse eigenvalue, which satisfies

ρ+

(
∇2L, s

)
= sup

‖v‖0≤s

{
vT K̂Xv

‖v‖22

}

= sup
‖v‖0≤s

{(
D̂v
)T

R̂X

(
D̂v
)

∥∥D̂v
∥∥2

2

·
∥∥D̂v

∥∥2

2

‖v‖22

}

≥ sup
‖v‖0≤s

{
vT R̂Xv

‖v‖22

}
· max

1≤j≤d

{
σ̂j
}
. (D.11)

The first term on the right-hand side of (D.11) is the largest sparse eigenvalue of R̂X . Since

we have from Lemma D.3 that, with probability at least 1− 2d−1 − d−2,

sup
‖v‖0≤s





∣∣∣vT
(
R̂X −Σ0

X

)
v
∣∣∣

‖v‖22



 ≤ C

√
s log d

n
.

Then for a sufficiently large n, we have

vT
(
R̂X −Σ0

X

)
v ≤ C

√
s log d

n
≤ 1

2
Λmax

(
Σ0
X

)
, for ‖v‖0 ≤ s.

Here Λmax

(
Σ0
X

)
denotes the largest eigenvalue of Σ0

X < +∞. Then we obtain

vT R̂Xv ≤ vTΣ0
Xv +

1

2
Λmax

(
Σ0
X

)
≤ 3

2
Λmax

(
Σ0
X

)
, for ‖v‖0 ≤ s.

Taking supremum over both sides, we get

sup
‖v‖0≤s

{
vT R̂Xv

‖v‖22

}
≤ 1

2
Λmax

(
Σ0
X

)
< +∞. (D.12)
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We now consider max1≤j≤d
{
σ̂j
}

in (D.11). In Corollary D.2 we prove that, with probability at

least 1− 2d−3,

|σj − σ̂j | ≤ C ′
√

log d

n
, for 1 ≤ j ≤ d,

where C ′ is a constant. For a sufficiently large n, we have

σ̂j ≤
3

2
σj < +∞, for 1 ≤ j ≤ d

with the same probability. Taking minimum over both sides, we get

max
1≤j≤d

{
σ̂j
}
≤ 3

2
max

1≤j≤d

{
σj
}
< +∞ (D.13)

with probability at least 1− 2d−2. Plugging (D.12) and (D.13) into the right-hand side of (D.11),

we reach the conclusion that ρ+

(
∇2L, s

)
< +∞.

D.3 Proof of Lemma C.4

Proof. For semiparametric elliptical design regression, we have

∇L(β∗) = K̂X,Y − K̂Xβ
∗ = K̂X,Y −ΣX,Y + ΣX,Y − K̂Xβ

∗,

where K̂X ∈ Rd×d and K̂X,Y ∈ Rd×1 are the submatrices of K̂Z ∈ R(d+1)×(d+1) defined in (3.13).

Since E(Y |X = x) = xTβ∗, we have

ΣX,Y = E(XY ) = E(XXTβ∗) = ΣXβ
∗.

Hence we have

‖∇L(β∗)‖∞ =
∥∥K̂X,Y −ΣX,Y + ΣXβ

∗ − K̂Xβ
∗∥∥
∞

≤
∥∥K̂X,Y −ΣX,Y

∥∥
∞ +

∥∥ΣXβ
∗ − K̂Xβ

∗∥∥
∞.

Before we upper bound the two terms on the right-hand side, we establish a concentration inequality

for K̂Z . Let DZ = diag(σ1, . . . , σd+1) and D̂Z = diag(σ̂1, . . . , σ̂d+1), where σ1, . . . , σd+1 are the

marginal standard deviations of Z ∈ R(d+1) = (Y,X)T while σ̂1, . . . , σ̂d+1 are the corresponding

Catoni’s estimators defined in (D.3). We have

ΣZ = DZΣ0
ZDZ , K̂Z = D̂ZR̂ZD̂Z ,

where R̂Z is the rank-based estimator of the generalized correlation matrix Σ0
Z defined in (2.6).

Han and Liu (2012) proved that, with probability at least at least 1− (d+ 1)−5/2,

∥∥R̂Z −Σ0
Z

∥∥
max
≤ C

√
log(d+ 1)

n
,
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where ‖M‖max = max1≤i,j≤d
{
|Mi,j |

}
for M ∈ Rd×d. We have

∥∥D̂ZR̂ZD̂Z −DZΣ0
ZDZ

∥∥
max

(D.14)

=
∥∥DZ

(
R̂Z −Σ0

Z

)
DZ +

(
D̂Z −DZ

)
R̂ZDZ + D̂ZR̂Z

(
D̂Z −DZ

)∥∥
max

≤
∥∥DZ

(
R̂Z −Σ0

Z

)
DZ

∥∥
max

+
∥∥(D̂Z −DZ

)
R̂ZDZ

∥∥
max

+
∥∥D̂ZR̂Z

(
D̂Z −DZ

)∥∥
max

≤ ‖DZ‖2max

∥∥R̂Z −Σ0
Z

∥∥2

max
+ ‖DZ‖max

∥∥D̂Z −DZ

∥∥
max

+
∥∥D̂Z

∥∥
max

∥∥D̂Z −DZ

∥∥
max

.

Following similar arguments in Corollary D.2, we have

∥∥D̂Z−DZ

∥∥
max
≤C

√
log(d+ 1)

n
,
∥∥D̂Z

∥∥
max
≤
∥∥DZ

∥∥
max

+C

√
log(d+ 1)

n

with probability at least 1−2(d+ 1)−3. We assume that σj (1 ≤ j ≤ d+ 1) is upper bounded, from

(D.14) we have, with probability at least 1− (d+ 1)−5/2 − 2(d+ 1)−3,

∥∥ΣZ − K̂Z

∥∥
max
≤ C

√
log(d+ 1)

n
,

which implies that with the same probability,

∥∥K̂X,Y −ΣX,Y

∥∥
∞ ≤ C

√
log(d+ 1)

n
,

∥∥ΣXβ
∗−K̂Xβ

∗∥∥
∞ ≤ ‖β

∗‖1
∥∥ΣX−K̂X

∥∥
max
≤ C‖β∗‖1

√
log(d+ 1)

n
.

Then we reach the conclusion.
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