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Optimal Computational and Statistical Rates of
Convergence for Sparse Nonconvex Learning Problems
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Abstract

We provide theoretical analysis of the statistical and computational properties of penalized
M-estimators that can be formulated as the solution to a possibly nonconvex optimization prob-
lem. Many important estimators fall in this category, including least squares regression with
nonconvex regularization, generalized linear models with nonconvex regularization, and sparse
elliptical random design regression. For these problems, it is intractable to calculate the global
solution due to the nonconvex formulation. In this paper, we propose an approximate regulariza-
tion path following method for solving a variety of learning problems with nonconvex objective
functions. Under a unified analytic framework, we simultaneously provide explicit statistical
and computational rates of convergence of any local solution obtained by the algorithm. Com-
putationally, our algorithm attains a global geometric rate of convergence for calculating the
full regularization path, which is optimal among all first-order algorithms. Unlike most existing
methods that only attain geometric rates of convergence for one single regularization parameter,
our algorithm calculates the full regularization path with the same iteration complexity. In par-
ticular, we provide a refined iteration complexity bound to sharply characterize the performance
of each stage along the regularization path. Statistically, we provide sharp sample complexity
analysis for all the approximate local solutions along the regularization path. In particular, our
analysis improves upon existing results by providing a more refined sample complexity bound
as well as an exact support recovery result for the final estimator. These results show that the
final estimator attains an oracle statistical property due to the usage of nonconvex penalty.

1 Introduction

This paper considers the statistical and computational properties of a family of penalized M -esti-
mators that can be formulated as

~
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where £(8) is a loss function while Py(3) is a penalty term with regularization parameter A. A
familiar example is the Lasso estimator (Tibshirani, 1996), in which £(8) = || X8 — y||3/(2n) and
Pr(B) = N|B]l1. Here X = (x1,...,%,)T € R"*? is the design matrix, y = (y1,...,yn)’ € R"is
the response vector, || - ||2 is the Euclidean norm, and ||8||; = Z?:l |85 is the £1 norm of B. In
general, we prefer the settings where both the loss function £(3) and the penalty term Py(3) in
(1.1) are convex, since convexity makes both statistical and computational analysis convenient.
Though significant progress has been made on understanding convex penalized M-estimators
(van de Geer, 2000; Bunea et al., 2007; van de Geer, 2008; Rothman et al., 2008; Wainwright, 2009;
Bickel et al., 2009; Zhang, 2009; Koltchinskii, 2009b; Raskutti et al., 2011; Negahban et al., 2012),
penalized M-estimators with nonconvex loss or penalty functions have recently attracted much
interest because of their more attractive statistical properties. Unlike the ¢1 penalty, which induces
significant estimation bias for parameters with large absolute values (Zhang and Huang, 2008),
nonconvex penalties such as the smoothly clipped absolute deviation (SCAD) penalty (Fan and Li,
2001) and minimax concave penalty (MCP) (Zhang, 2010a) can eliminate this estimation bias and
attain more refined statistical rates of convergence. As another example of penalized M-estimators
with nonconvex loss functions, we consider a semiparametric variant of the penalized least squares
regression. Recall that a penalized least squares regression estimator can be formulated as

~
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where S = (y, X)T(y, X) /n is the sample covariance matrix of a random vector (Y, X7)T € R+1.
When the design matrix X contains heavy-tail data, we may resort to the elliptical random design
regression, which is a semiparametric extension of the Gaussian random design regression. More
spec1ﬁcally, we replace the sample covariance matrix S with a possibly indefinite covariance matrix
estimator K (to be defined in §2.2), which is more robust within the elliptical family. Since K does
not guarantee to be positive semidefinite, the loss function

L(B) = (1, MK, -p")"

could be nonconvex. Another example of nonconvex loss functions is the corrected regression for
error-in-variables linear models (Loh and Wainwright, 2012).

Though the global solutions of these nonconvex M-estimators enjoy nice statistical properties,
it is in general computationally intractable to obtain the global solutions. Instead, a more realistic
approach is to directly leverage standard optimization procedures to obtain a local solution B \ that
satisfies the first-order Karush-Kuhn-Tucker (KKT) condition

0c a{ﬁ(@) +7>A(BA)}, (1.2)

where O(-) denotes the subgradient operator.
In the context of least squares regression with nonconvex penalties, several numerical procedures
have been proposed to find the local solutions, including local quadratic approximation (LQA) (Fan



and Li, 2001), minorize-maximize (MM) algorithm (Hunter and Li, 2005), local linear approxima-
tion (LLA) (Zou and Li, 2008), and coordinate descent (Breheny and Huang, 2011; Mazumder et al.,
2011). The theoretical properties of the local solutions obtained by these numerical procedures are
in general unestablished. Only recently Zhang and Zhang (2012) showed that the gradient descent
method initialized at a Lasso solution attains a unique local solution that has the same statistical
properties as the global solution; Fan et al. (2012) proved that the LLA algorithm initialized with a
Lasso solution attains a local solution with oracle statistical properties. Similar conclusion was also
obtained by Zhang (2010b, 2012), where the LLA algorithm was referred to as multi-stage convex
relaxation. However, each stage of the LLA algorithm requires that we exactly calculate the solu-
tion to a Lasso problem, which is not practical in applications. Therefore, the total computational
complexity of the LLA algorithm is unclear.

In this paper, we propose an approximate regularization path following method for solving a
general family of penalized M-estimators with possibly nonconvex loss or penalty functions. Our
algorithm leverages the fast local convergence in the proximity of sparse solutions, which is also
observed by Luo and Tseng (1992); Nesterov (2007); Hale et al. (2008); Wright et al. (2009);
Agarwal et al. (2012); Xiao and Zhang (2012). More specifically, we consider a decreasing sequence
of regularization parameters {)\t}i\io, where Ao corresponds to an all-zero solution, and Ay =
Atgt is the target regularization parameter that ensures the obtained estimator to achieve the
optimal statistical rate of convergence. For each A;, we construct a sequence of local quadratic
approximations of the loss function £(3), and utilize a variant of Nesterov’s proximal-gradient
method (Nesterov, 2007), which iterates over the updating step

(k)
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where ﬂt(k) and Lgk) corresponds to the k-th iteration of the proximal-gradient method for A;. Here
Lgk) is chosen by an adaptive line-search method, which will be specified in §3.2. Let BAt be an
exact local solution satisfying (1.2) with regularization parameter \;. As illustrated in Figure 1, for
each \;, our algorithm computes an approximation ;’3} of the exact local solution B,\t up to certain
optimization precision. Such an approximate local solution Bt guarantees to be sparse, and therefore
falls into the fast convergence region corresponding to Aiy1. In this way, the resulting procedure
attains a geometric rate of convergence within each path following stage, and therefore achieves
a global geometric rate of convergence for calculating the entire regularization path. Moreover,
without relying on the quality of the initial lasso solution as required by Zhang and Zhang (2012)
and Fan et al. (2012), we establish the nonasymptotic statistical rates of convergence and oracle
properties for all the approximate and exact local solutions along the full regularization path.
The idea of path following has been well-studied for convex sparse recovery problems (Osborne
et al., 2000; Efron et al., 2004; Hastie et al., 2005; Park and Hastie, 2007; Zhao and Yu, 2007;
Rosset and Zhu, 2007; Hale et al., 2008; Garrigues and Ghaoui, 2008; Wen et al., 2010; Friedman
et al., 2010; Xiao and Zhang, 2012; Gértner et al., 2012; Mairal and Yu, 2012). Among them, Xiao
and Zhang (2012) proposed a proximal-gradient homotopy method for the least squares regression
with ¢; penalty. Compared to these previous works, we consider a broader family of nonconvex
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Figure 1: For regularization parameter A, B A\, 1s an exact local solution satisfying (1.2) with regular-
ization parameter A;. Within the ¢-th path following stage, our algorlthm achieves an approximate
local solution ,Bt, which approximates the exact local solution ﬁ,\t up to certain optimization pre-
cision. Our approximate path following algorithm ensures that 3; is sparse and therefore falls into
the fast convergence region corresponding to regularization parameter A\iyq.

M -estimators, including nonconvex penalty functions such as SCAD and MCP, as well as noncon-
vex loss functions such as semiparametric elliptical design loss. In particular, we provide sharp
computational and statistical analysis for all the approximate and exact local solutions attained by
the proposed approximate path following method.

The contributions of this paper are two folds: Computationally, we propose an optimization
algorithm that ensures a global geometric rate of convergence for nonconvex sparse learning prob-
lems, which is the fastest achievable rate among all first-order methods. In detail, recall that N is
the total number of path following stages. In the N-th path following stage, let €,pt be the desired
optimization precision of the approximate local solution EN, we need no more than a logarithmic
number of the proximal-gradient update iterations defined in (1.3) to calculate the entire path:

1
Total # of proximal-gradient iterations < C'log < > ,
€opt

where C' > 0 is a constant. Statistically, we prove that along the full regularization path, all the ap-
proximate local solutions obtained by our algorithm enjoy desirable statistical rates of convergence
for estimating the true parameter vector 8*. In detail, let s* be the number of nonzero entries of
3*, the approximate local solution Bt’s satisfy

18: — B%||, < C\V/s*, for t=1,...,N (1.4)

with high probability. In particular, within the N-th path following stage, we have Ay = gt =
C’\/logd/n. Here C' and C are positive constants that do not dependent on d and n. In certain
regimes, the final approximate local solution BN achieves the optimal statistical rate of conver-
gence. Moreover, we prove that within the ¢-th path following stage, the iterative solution sequence
{Bﬁk)}zozo defined by (1.3) converges towards a unique exact local solution B;w which enjoys a
more refined oracle statistical property. More specifically, let s} be the number of “large” nonzero



coefficients of 3* and s5 = s* — s} be the number of “small” nonzero coefficients (detailed definitions
of s7 and sj are provided in Theorem 4.7), we have

B8l < S+ VBN for =1 15)

with high probability. In particular, for the final stage we have Ay = Aigy = C”/logd/n. Here C,
C’" and C” are positive constants that don’t dependent on d and n. Note that the oracle statistical
property in (1.5) is significantly sharper than the rate of convergence in (1.4), e.g., when s* = s}
and t = N, the right-hand side of (1.4) is of the order \/s*logd/n, while the right-hand side of
(1.5) is of the order y/s*/n. Furthermore, we also prove that under suitable conditions, B)\t exactly
recovers the support of 8%, i.e.,

supp(By,) = supp(3).

In summary, our joint analysis of the statistical and computational properties provides a theoretical
characterization of the entire regularization path.

In an independent work, Loh and Wainwright (2013) considered similar problems and proved
that all local solutions of various penalized M-estimators have good statistical properties if the
loss and penalty functions satisfy the restricted strong convexity and other regularity conditions.
Our results are different from theirs in two aspects: (i) They provided a set of sufficient conditions
under which local optima have desired theoretical properties, and verified that the composite gra-
dient descent algorithm satisfies these conditions. However, their conditions can not be applied to
analyze our path following method, since we need to simultaneously analyze all the approximate
local solutions along the entire regularization path. Our analysis of the full regularization path is a
stronger result that requires more sophisticated proof techniques. (ii) Unlike their analysis, which
provided a global characterization of local solutions but required additional regularity assumptions,
our theoretical analysis of statistical performance is embedded in the analysis of the optimization
procedure for the approximate local solutions attained by the procedure. In particular, our statis-
tical results apply to all the approximate local solutions along the full regularization path, which
is built upon a more fine-grained analysis of the sparsity pattern of all the intermediate solutions
obtained from the proximal-gradient iterations. (iii) Moreover, in the regime where the absolute
values of 3*’s nonzero coefficients are “large”, we provide a more refined oracle rate (1.5) of the local
solutions along the regularization path, which clearly shows the theoretical benefits of nonconvex
penalty functions over ¢ regularization. Our statistical results are sharper than those provided by
them, which are the same as using standard ¢; regularization. In addition, we establish the exact
support recovery results while they didn’t.

The rest of this paper is organized as follows. First we briefly introduce some useful notation.
In §2 we introduce sparse learning problems with possibly nonconvex loss and penalty functions. In
63 we introduce our approximate regularization path following method. In §4 we present the main
theoretical results concerning the computational efficiency and statistical accuracy of the proposed
procedure. In §5 we prove the theoretical results in §4. Numerical results are presented in §6.

Notation: Let 3 = (81,...,84)" € Re. For q € [1,+00), we denote the ¢, norm of 3 by |3, =

(2?21 ]ﬁj\q)l/q. Specifically, we define || 3|« = maxi<j<q {|5;]} and ||B||o = card {supp(3)}, where
supp(B) = {j : B; # 0} and card{-} is the cardinality of a set. We denote the ¢, ball {3 : ||B|; < R}



by B,(R). For aset S, we denote its cardinality by |S| and its complement by S. We define 35 € R?
and Bg € R? as

(Bs);=1(jeS)-Bj, (Bg)j=L(j¢5S)-pj, for j=1,...,d and S, 8 C{1,...,d},

where 1(-) denotes the indicator function. We denote all-zero matrices by 0, and the diagonal matrix
that has 21,..., 24 on its diagonal by diag{z1,...,zq}. Meanwhile, let M € R%*? be a matrix, we
overload diag(M) to be a diagonal matrix with diagonal entries [diag(M)];; = Mj; (j =1,...,d).
For a function f(83), we denote its gradient by V f(3) and its subgradient by 9f(3). Specifically,
the derivative of a differentiable univariate function f(x) is denoted by f’(z). If random vectors
Z, and Zs have the same distribution, we denote by Z1 = Z2 The d-dimensional £ unit sphere
is denoted by S~!. Throughout this paper, we denote ,6 and ﬁ to be the exact local solution and
approximate local solution respectively. We index ﬂ with the corresponding regulation parameter
A eg., B\A- In the proposed method, we use subscript t to index the path following stages, e.g, the
approximate local solution obtained within the ¢-th stage is denoted by ,@. Within the t-th stage,
we index the proximal-gradient iterations with superscript (k), e.g., 515’“). For notational simplicity,
we use generic absolute constants C, ", ..., whose value may change from line to line.

2 Some Nonconvex Sparse Learning Problems

Many theoretical results on penalized M-estimators rely on the condition that the loss and penalty
functions are convex, since convexity makes both computational and statistical analysis convenient.
However, the statistical performance of the estimator obtained from these convex formulations could
be suboptimal in some settings. In the following, we introduce several nonconvex sparse learning
problems as motivating examples.

2.1 Nonconvex Penalty

Throughout this paper, we consider decomposable penalty functions

d
PA(B) = Zm(&%

e.g., the ¢; penalty \||B|1 = Z?Zl AlBj]. When the minimum of |37| > 0 is not close to zero, the
/1 penalty introduces large bias in parameter estimation. To remedy this effect, Fan and Li (2001)
proposed the SCAD penalty

1551 a\—z
pa(Bj) = )\/0 {H(Z <A+ ((a)\—l)); I(z > )\)} dz, (2.1)
= NG| L1851 < N) — (87 — 2aM|B;1 +2%) /(2(a — 1)) - LA < [B;] < a))
DX g5 ax), a2,



and Zhang (2010a) proposed the MCP penalty

mop = A [ (1= e (22)

83 bA2
= (MBIl =55 ) - BB < bA) + == - L(I65] > bA), b> 0.
See Zhang and Zhang (2012) for a detailed survey. We illustrate these nonconvex penalty functions
in Figure 2(a). These nonconvex penalties can be formulated as the sum of the ¢; penalty and a
concave part

pa(B;) = AlBj| + ax(8)), (2.3)
where the specific forms of the concave component g,(3;) are
2X|B;| — B2 — A2 1)A? — 2)|3;
\/3;|(a _ﬁi) I < 18] < an) + 2D 5 551 w1551 > an), sCAD,
0 (Bj) = g2 .
S AL CTEE R SR VE) R (! MCP,

which are illustrated in Figure 2(b). The corresponding ¢} (5;)’s are also illustrated in Figure 2(c).
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Figure 2: An illustration of nonconvex penalties: (a) Plots of p(8;) for MCP, ¢, and SCAD; (b)
Plots of ¢)(8;) for MCP and SCAD; (c) Plots of ¢}(8;) for MCP and SCAD. Here py(f;) is the
penalty function evaluated at the j-th dimension of 8, ¢x(8;) is the concave component of px(5;),
and ¢} (B;) is the derivative of ¢gx(8;). Here we set a = 2.1 for SCAD, b = 2 for MCP, and A\ = 1.

In fact, our method and theory are not limited to these specific forms of py(8;) and ¢ (5;). More
generally, we only rely on the following regularity conditions on the concave component gy(f3;):

Regularity Conditions on Nonconvex Penalty

(a) ¢)\(B;) is monotone and Lipschitz continuous, i.e., for 6;- > 3, there exist two constants (_ > 0
and (4 > 0 such that

IPUCIETNCO
Bj_ﬁj

7

-4+ <0;



In regularity condition (a), (— and (4 are in fact two parameters that control the concavity of
gx(Bj). Note that the second order derivative of a function characterizes its convexity/concavity.
Taking B} — B; in regularity condition (a), we have ¢}(53;) € [-(—, —(4] (here we ignore those ;s
where ¢} (3;) doesn’t exist), which suggests larger (_ and (4 allow ¢»(8;) to be more concave. For
SCAD, we take (_ =1/(a—1) and (4 = 0. For MCP, we take (_ = 1/b and (4 = 0. In Figure 2(b)
and Figure 2(c), we can verify that regularity conditions (a)—(d) hold for MCP and SCAD. For
MCP, we illustrate regularity condition (e) in Figure 5(a) of Appendix A. For SCAD, we illustrate
property (e) in Figure 5(b) (for A2 > a);) and Figure 5(c) of Appendix A (for Ay < al\p).

By (2.3) we have PA(8) = S pa(8;) = A|B1 + Z;l:l ¢r(B;). For notational simplicity, we
define

d
Qx(B) = 3" aa(8)) = PA(B) = A8l (24)

Hence 9, () denotes the decomposable concave component of the nonconvex penalty Py (3).

2.2 Nonconvex Loss Function

In this paper, we focus on an example of nonconvex loss function named semiparametric elliptical
design regression. Recall that the elliptical distribution is defined as:

Definition 2.1 (Elliptical distribution). For g = (u1, ..., uq)T € R?and & € R™? with rank(X) =
k < d, arandom vector W = (W1,..., Wd)T follows an elliptical distribution denoted by EC4(p, 2, =
if and only if

W L+ ZAU.

Here U is a random vector uniformly distributed on the unit sphere S¥=1; = > 0 is a scalar random
variable independent of U; A € R%*7 is a deterministic matrix such that AAT = ¥. We call ¥ the
scatter matrix. The generalized correlation matrix is defined as 30 = diag(X)~1/2. 3 diag(3) /2.
When E(Z2) exists, XV is the correlation matrix of W.

Remark 2.2. Note that simultaneously scaling = and U (e.g., E — Z/C and U — U /C, where C
is a constant) leads to the same elliptical distribution. To make this model identifiable, we assume
My = E(WJ) and E]‘j = Var(Wj).

Remark 2.3. The elliptical distribution family includes a variety of possibly heavy-tail distribu-
tions: multivariate Gaussian, multivariate Cauchy, Student’s t, logistic, Kotz, symmetric Pearson
type-1I and type-VII distributions.

),



For semiparametric elliptical design regression, we have n pairs of observations z; = (y1,x7 )7,
ooy Zn = (Yn, x5)T of a random vector Z = (Y, XT)T € R that follows the (d + 1)-dimensional
elliptical distribution defined in Definition 2.1. We can verify that (Y| X = x) follows a univariate
elliptical distribution. We assume E(Y|X = x) = x? 3*. Then we can define the population version
of the semiparametric elliptical design regression estimator as

o 1 2 1 T
B=argmin< ~Ex y ((Y—XTﬁ) )+77)\(ﬁ) =argmin{ ~(1,-87) Bz (1,-87) +P\(B) ;. (2.5)
a |2 a (2
BER BER

The above procedure is not practically implementable, since the population covariance matrix Xz
is unknown in (2.5). In practice, we need to estimate the population covariance matrix ¥z. For
this, we propose a rank-based covariance matrix estimator Kz, which is obtained in two steps as
described below:

Elliptical Covariance Matrix Estimation

S1. In the first step, we define a rank-based estimator f{Z for the generalized correlation matrix
EOZ using the Kendall’s tau statistic. Let z1,...,z, € R¥*! with z; = (zi1, - - - ,zi(dﬂ))T be n
independent observations of Z. The Kendall’s tau correlation coefficient is defined as

Z 2 sign (zij—zi/j) sign (zix —zirk)
n(n —1) ’

for j # k,

/T\jk(zlv e Zn)= 1<i<i’<n

1, for j = k.

We define the Kendall’s tau correlation matrix estimator as
= = . PN
Rz = [(Rz)jk} = [sm <§Tjk (z1,..., zn))} . (2.6)

Han and Liu (2012); Liu et al. (2012); Han and Liu (2013) showed that Rz is a robust
estimator of the population generalized correlation matrix X%, and is invariant to different
generating variable Z within the whole elliptical family.

S2. In the second step, we construct a covariance matrix estimator

Rz = [(Kz),] = [(Rz),, 58] (2.7)
where 71, ...,044+1 are the estimators of the standard deviations of Z1, ..., Z411. We calculate

01,...,04+1 using the Catoni’s M-estimator (Catoni, 2012) described in Appendix D. The
main advantage of the Cantoni’s estimator is that, for a fixed confidence level, it achieves the
same deviation behavior as a Gaussian random variable under a weak moment condition.

Note that K z 1s not necessarily positive semidefinite, which implies that the loss function £(3)
in semiparametric elliptical design regression

L) = (1,-8") Kz (1,-87)"

is possibly nonconvex.



3 Approximate Regularization Path Following Method

Before we get into details, we first present the high level idea of approximate regularization path
following. We then introduce the basic building block of our path following method — a proximal-
gradient method tailored to nonconvex problems.

3.1 Approximate Regularization Path Following

Fast local geometric convergence in the proximity of sparse solutions has been observed by many
authors (Hale et al., 2008; Wright et al., 2009; Wen et al., 2010; Agarwal et al., 2012; Xiao and
Zhang, 2012). We exploit such fast local convergence under an approximate path framework to
achieve fast global convergence.

Initialization: In (1.1), when the regularization parameter \ is sufficiently large, the solution to
sparse learning problems is an all-zero vector. Recall that any exact local solution ,@A satisfies the
first-order optimality condition, 0 € G{E(,é}) + Py (BA) }. Since the nonconvex penalty Px(8) can
be formulated as Py (8) = Qx(B)+\||B]]1, where Q) () is defined in (2.4), the first-order optimality
condition implies there should exist some subgradient & € 8||3 |1 such that

0="VL(B)) +A(B) + AL, (3.1)

Let A be chosen such that 8y = 0. By regularity condition (c), we have VQ,(0) = 0. Meanwhile,
since € € 0||0]|1, we have ||€||cc < 1, which implies ||VL(0)||oc < Ain (3.1). Hence, A\g = ||[VL(0)||0
is the smallest regularization parameter such that any exact local solution BA to the minimization
problem (1.1) is all-zero. We choose this \¢ to be the initial parameter of our regularization path.

Approximate Path Following: Let At € (0, Ag) be the target regularization parameter in (1.1).
We consider a decreasing sequence of regularization parameters {)\t}i\io, where

M=n'X (t=0,...,N), AN = Mgt and 7 €[0.9,1). (3.2)

Here 7 is an absolute constant that doesn’t scale with sample size n and dimension d. In §4 and §5
we will show that such a range of n ensures the global geometric rate of convergence. Consequently,
since we have Aigt = Agn™ in (3.2), the number of path following stages is

_ log(AO/Atgt)

log(n~1) (3:3)

Without loss of generality, we assume that 7 is properly chosen such that N is an integer. We will
show in §4 that, Ay scales with sample size n and dimension d. Since 7 is a constant, the number
of stages N also scales with n and d. Within the ¢-th (t = 1,..., N) path following stage, we aim
to obtain a local solution to the minimization problem min{£(3) + P»,(8)}.

As shown in Lines 5—9 of Algorithm 1, within the ¢-th (¢ = 1,..., N — 1) path following
stage, we exploit a variant of proximal-gradient method for nonconvex problems (Algorithm 3) to
obtain an approximate solution Bt that corresponds to the regularization parameter \; = n‘\g. To
ensure that each path following stage enjoys a fast geometric rate of convergence, we employ an
approximation path following strategy. More specifically, we use the approximate local solution
ﬁt,l obtained within the (¢ — 1)-th path following stage to initialize the ¢-th stage (Line 8 and Line

10



12 of Algorithm 1). Recall that we need to adaptively search for the best Lﬁk) (k=0,1,...) in
(1.3). To achieve computational efficiency, within the (¢ — 1)-th path following stage, we store the

chosen Lgli)l at the last proximal-gradient iteration as L;_;. Within the ¢-th stage we initialize the

search for LEO) with L;—; (Line 8 and Line 12 of Algorithm 1), which will be explained in §3.2.

Algorithm 1 The approximate path following method, which solves for a decreasing sequence of
regularization parameters {\;},. Within the ¢-th path following stage, we employ the proximal-
gradient method illustrated in Algorithm 3 to achieve an approximate local solution Bt for A;. This
approximate local solution is then used to initialize the (¢ 4 1)-th stage.

1 { Bt}iil + Approximate-Path-Following(A¢gt, €opt )

input: Ay > 0, €pt > 0 {Here we set eopt < Aggt/4.}

3: parameter: 1 € [0.9,1), R > 0, Lin > 0, Ao = [|[VL(0)||x
{For logistic loss, we set R € (0,400); For other loss functions, we set R = +00.}
{In practice, we set Lmin to be a sufficiently small value, e.g., 1076.}

»

4: initialize: By < 0, Ly < Luyin, N + 10g()\0/)\tgt)/log(n_1)

50 fort=1,...,N —1do

6: At ’l’]t)\o

7 € < )\t/4

8: {Bt, Lt} — Proximal—Gradient(/\t, €t, Bt,l, L q, R) as in Algorithm 3
9: end for

10: Ay )\tgt

11: GJ\L(— €opt _

12: {,BN, LN} — Proximal—Gradient(/\N, €N, BN_1,Ln_1, R)
1N

13: return {ﬁt}tzl

Configuration of Optimization Precision: We set the optimization precision ¢; for the ¢-th
(t=1,...,N —1) stage to be \;/4 (Line 7 of Algorithm 1). Within the N-th path following stage
where Ay = Mgt (Line 10), we solve up to high optimization precision €ypt < Atgt/4 (Line 11). The
intuition behind such a configuration of optimization precision is explained as follows:

e Fort=1,...,N —1, recall the exact local solution BAt is an estimator of the true parameter
vector B* corresponding to the regularization parameter \;. According to high-dimensional
statistical theory, the statistical error of B\)\t should be upper bounded by C\;v/s* with high
probability, where s* = ||8*[|o. In Lemma 5.1 we will prove that, if the optimization error of
the approximate local solution Et is at most A;/4, then Et lies within a ball of radius C’\;v/s*
centered at B* with high probability. That is to say, the approximate local solution Bt has
the same order of statistical error as the exact solution ,@At, and therefore enjoys certain
desired statistical recovery properties. In particular, in Theorem 5.5 we will prove that, ﬁt
is guaranteed to be sparse, and thus falls into the fast convergence region of the next path
following stage.

e However, for t = N, we need to solve up to high optimization precision €ypt < A¢gt/4. This
is because, even though B; and 3), both have statistical error of the order A\¢v/s*, in certain
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regimes the exact local solution E)\t is able to achieve an improved recovery performance due
to the usage of nonconvex penalties (as shown in (1.5), which will be proved in Theorem 4.8).
Therefore, within the final stage we need to obtain an approximate solution ,5 ~ as close to the
exact local solution IB\)\tgt as possible, so that EN has a faster statistical rate of convergence.

In Algorithm 1, R > 0 (Line 3) is a parameter that decides the radius of the constraint that
is used in the proximal-gradient method (Line 8 and Line 12). In detail, for least squares loss and
semiparametric elliptical design loss, we do not need any constraint. Therefore, we set R = +o0.
However, for logistic loss we need to impose an /5 constraint of radius R € (0, +o0c). Here Ly, is
a parameter used in the proximal-gradient method (Line 3 of Algorithm 3), which is often set to
be a sufficiently small value in practice, e.g., Lmin = 1076, We will explain with detail in §3.2.

3.2 Proximal-Gradient Method for Nonconvex Problems

Before we introduce our proximal-gradient method that is tailored to nonconvex problems, we first
give a brief introduction to Nesterov’s proximal-gradient method (Nesterov, 2007), which solves the
following convex optimization problem

minimize ¢5(8), where ¢(8) = L(8)+ PA(8), B e L. (3.4)

Here £(3) is convex and differentiable, Py () is convex but possibly nonsmooth, and €2 is a closed
convex set.

Recall that Bt(k) corresponds to the k-th iteration of the proximal-gradient method within the
t-th path following stage. Nesterov’s proximal-gradient method updates Bt(k) to be the minimizer
of the following local quadratic approximation of ¢y, (3) at Bﬁk_l)

(k)
by, (B8 = £(BFY) + VL (B )T (8-Y) + e |88 + P (8), (35)

where Lgk) > 0 is chosen by line search.

However, Nesterov’s proximal-gradient method requires both £(8) and Py(3) in (3.4) to be
convex. However, in the optimization problem (1.1) considered in this paper, £(3) and Py (3) may
no longer be convex. To extend the proximal-gradient method to nonconvex settings, we adopt an
alternative formulation of the objective function.

Recall that the nonconvex penalty can be written as Px(8) = A||B]|1 + Qa(8), where Q,(3) is
defined in (2.4). For notational simplicity, we denote £(8) + Qx(8) by £x(8). Consequently, the
objective function ¢x(3) = L(B) + Pr(8) = L(B) + Qa(B) + Al|B||1 can be reformulated as

oA(B) = LA(B) + AlIBI1, (3.6)

where we can view L A(B) as a surrogate loss function and A||3||1 as a new penalty function. Such a
reformulation ensures the convexity of the new penalty function. Moreover, in Lemma 5.1 we will
prove that, the surrogate loss function L A(B) is actually strongly convex under certain conditions,
which guarantee to hold along the full regularization path. Correspondingly, we modify Nesterov’s
proximal-gradient method to minimize the local quadratic approximation defined as

(k)
Uy, (BB 70) =0 (017) + VL (B0 (85 + Z]lg—p O + Bl 3.7
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Unlike (3.5), we use a quadratical approximation to the surrogate loss function L A(B) in (3.7), but
instead of the original loss function £(3). At the k-th iteration of the proximal-gradient method,

we update ,ng) to be the minimizer of the quadratic approximation defined in (3.7), i.e.,

Bf’“) — arg;égin {¢L§k>,At (8 ﬁt(kil))} . (3.8)

Now we specify the constraint set  in (3.8). For £(3) being least squares or semiparametric
elliptical design loss, we set Q2 = R?. For logistic loss, we set Q = By(R) with R € (0, +00), where
Bs(R) is a centered {9 ball of radius R. In Lemma 5.1 we will show that, in the setting of logistic loss,
the boundedness of | ﬁgk)
function £ A (B) along the full regularization path. To unify the notations, we consider {2 = By(R)

throughout — when the constraint set = R?, we set R = +o00. Correspondingly, we denote (3.8)
by

,'S is essential for establishing the strong convexity of the surrogate loss

k k—1
B o005, 8"V R). (3.9)
In the sequel, we provide the detailed update schemes for the nonconvex problems discussed in §2:

Update Schemes of Proximal-Gradient Method for Nonconvex Problems

e When Q = R?, TL(’“) N (Bék_l); —i—oo) is a soft-thresholding operator taking the form
t

0 it |3;] < A/L",

B B B (3.10)
sign(B;) (|8 = Ae/L) i 3| > A/,

(TLE’“,M e +°°)>j B {
for j =1,...,d, where

= _ 1 ~ _ _ 1 _ _
=0l - Vi el ) =8 - o (Ve v (el ) e
t t

and Bj is the j-th dimension of 3.

e When Q = By(R), 7-L§k)’)\t

in (3.10) onto Ba(R), i.e.,

(,Bt(k_l); R) is obtained by projecting 7-L(k) N (ﬁﬁk_l); —i—oo) defined
t Nt

Ty (B io0) i [Ty, (B 4o00) [, < R

Lgk)J\z
(k—1), _ (k—1),
o (B8 = R (80

. (3.12)

(B Vi +o0) |, = R.

— if HT(k)
o (G Do), Vo

See Appendix B for a detailed derivation. In the following, we specify VL(3) and VQ,,(3) in
(3.11) for the nonconvex problems discussed in §2:
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e For the (nonconvex) loss functions discussed in §2, VL(3) takes the forms of

(
1
—XT (X,B — y), least squares loss,
_ exp(x; B i
VLB) =< = Z <1+exp),6) - yi>, logistic loss,
K X,B ~-K XY, semiparametric elliptical design loss,

where KX € R4 and I/ix,y € R are defined as the submatrices of ﬁz, ie.,

I T
Ky— | K Exy ) (3.13)
Kxy Kx

e For the nonconvex penalty functions discussed in §2, VQ,,(8) takes the forms of

Acsign(B;) — B; )
(VO (8)), = ol

_ %)\t sign(B;) - L(1;] < bA) — Arsign(8;) - L(18;] > bAe), MCP,

]I()\t < ’ﬁj| < CL)\t) — N Sign(ﬁj) : ]I(’ﬁﬂ > CL)\t), SCAD,

where a > 2, b > 0.

Line-Search Method: Before we present the proposed proximal-gradient method in detail, we
briefly introduce a line-search algorithm, which adaptively searches for the best quadratic coeffi-
cient Lgk) of the local quadratic approximation (3.7). As shown in Lines 4—7 of Algorithm 2, the

(k)

main idea of line-search is to iteratively increase L;”’ by a factor of two and compute the corre-

sponding ,Bék), until the local approximation ISORY (ﬁﬁ’“); ,B,Ek_l) ) becomes a tight upper bound of
t

the objective function ¢y, (,ng)). We will theoretically characterize the computational complexity

k)

of this line-search method in Remark 4.6 and specify the range of Lg in Theorem 5.5

Algorithm 2 The line-search method used to search for the best Lgk) and compute the correspond-
ing ,Bék). Here ¢,,(8) is the objective function defined in (3.4), and (UN5 A (ﬁ; ,Bt(kfl)) is the local
quadratic approximation of ¢y, (8) defined in (3.7).
8™, LMY  Line-Search (A, B, Linit, R)
input: A\; > O,,@tk 1 IS Rd,let >0,R>0
initialize: L") « Ly
repeat
,B,gk) «— T ACRY (8;" s R) as defined in (3.9)
. k k— k k
6 if oy (B > by, ( ). 8% 1) then L") « 21

v until 6, (81) <90, (88" )
8: return {B,gk),Lgk)}

—

(k—1)
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Stopping Criterion: Now we introduce the stopping criterion of our proximal-gradient method.
In other words, we specify the optimality conditions that should be satisfied by the approximate
solution Bt attained by our proximal-gradient method.

It is known that any exact local solution B,\ to the optimization problem

minimize ¢,(8), where ¢)(8) = EA(B) +A|IB|1, BeQ

satisfies the optimality condition, i.e, there exists some & € 8” ,@)\ such that

Iy
(Bx—B)" (VEA(B)) +2¢) <0, forany Be Q. (3.14)

We can understand this optimality condition as follows: Locally at B \, any feasible direction pointed
at B\)\, ie., (BA —,3) where 8 € Q, leads to a decrease in the objective function value ¢,(3), because
as shown in (3.14), such a direction forms an obtuse angle with the (sub)gradient vector of ¢ (3)
evaluated at B,\. If ﬁA lies in the interior of Q, e.g., @ = R%, then (3.14) reduces to the known
first-order KKT condition,

VENA(BA) + X =0, where £¢ 8HEAHI. (3.15)

To see this, given BA lies in the interior of €2, we have (,@A + C’v) € Q and (B,\ — C'v) € () for any
fixed v € R? and C' > 0 sufficiently small. Setting 3 in (3.14) to be these two values, we obtain
UT(VE A (B,\) + 5) = 0, which further implies (3.15) since v is arbitrarily chosen.

Based on the optimality condition in (3.17), we measure the suboptimality of a 8 € Q with

, (B-8)"

wx(B) = min max{-———"—

) ¢'€d||Bll1 B'e { 18 = Bllx

To understand this measure of suboptimality, first note that, if 3 is an exact local solution, then we
have wy(B3) < 0 by (3.14). Otherwise, if 3 is close to some exact local solution, then wy(3) is some
small positive value. When 3 lies in the interior of €2, then (3.16) reduces to a more straightforward

(VLA(B) + Ag’)} . (3.16)

wA(B) = min {|[VLA(B) + ¢ } 3.17
A8 = min {[VEx(8) + €] (3.17)
This is because for any fixed v € R?, we have (8 + Cv) € Q for C' > 0 sufficiently small. Setting 3
to be this value in (3.16), we have

. ol , . ~ ,
wA(B) = min max {Hvul(Vﬁ/\(ﬁ) +A¢ )} = £’€I%III%H1{HVEA('B) +A¢ Hoo},
where the second equality follows from the duality between ¢; and ¢, norm.

Equipped with the suboptimality measure wy(3) defined in (3.16), we can define the stopping
criterion of our proximal-gradient method within the ¢-th path following stage to be wy, (,@,Ek)) < g,
where ¢; > 0 is the desired optimization precision (Line 9 of Algorithm 3). Therefore, the proximal-
gradient method achieves an approximate local solution Bt with suboptimality €;. Recall that within
the ¢t-th path following stage (¢t =1,..., N — 1), we set ¢ to be A\;/4 (Line 7 of Algorithm 1), while
within the N-th path following stage, we set €; = €qpt <K Atgt/4 (Line 11 of Algorithm 1).
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Algorithm 3 The proximal-gradient method for nonconvex problems, which iteratively leverages
the line-search method illustrated in Algorithm 2 at each iteration.
: {Et, Lt} < Proximal-Gradient ()\t, et,,@t(o), Lgo), R)
input: \; >0, >0,8% e RLLO > 0 R >0
parameter: L, >0
initialize: k£ < 0
repeat

k+—k+1

Liniy < max {Lminy Lgk_l)/Q}

ik), L,Ek) — Line—Search(/\t,,B,gk_l), Linit, R) as in Algorithm 2

until w), (Bt(k)) < ¢ as defined in (3.16)
Bt A ﬂik)
. Ly« LY
: return {Bt,Lt}

—_

= =

Proposed Proximal-Gradient Method: We are now ready to present the proposed proximal-
gradient method in detail. Recall that, within the ¢-th stage of our path following algorithm, we
employ the proximal-gradient method to obtain a desired approximate local solution ,5,5 (Line 8
and Line 12 of Algorithm 1). As shown in Line 8 of Algorithm 3, at the k-th iteration of our
proximal-gradient method, we employ the line-search method (Algorithm 2) to search for the best
Lgk) and calculate the corresponding Bt(k).

At the k-th iteration of the proximal-gradient method, we set the initial value Liyit of the line-
search procedure to be max {Lmin, Lgkil) / 2} (Line 7 of Algorithm 3). Here Lyi, > 0 is a parameter
used to prevent Li,; from being too small. In practice, Ly, is often set to be a sufficiently small
value, e.g., Lyin = 1076, The intuition behind such initialization can be understood as follows: As
shown in (3.7), Lgk_l) and Lgk) are the quadratic coefficients of the local quadratic approximations

of the objective function at ﬁgkiz) and ﬁgkil) respectively. Intuitively speaking, ﬁgkiz) and ﬁgkil)

are close to each other, which implies that Lgkil) is a good guess for Lgk). Hence we can initialize

the line-search method for Lgk) with a value slightly smaller than Lgkfl), e.g., Lgkfl)/Q.

When the stopping criterion wy, (ﬁt(k)) < ¢ is satisfied, the proximal-gradient method stops and
outputs the approximate local solution Et = B,Ek) (Line 10 of Algorithm 3). We also keep track of
L= Lgk) to accelerate the line-search procedure within the next path following stage.

The reason we employ the line-search method instead of using a fixed Lgk)
line-search algorithm enables us to automatically exploit the strong convexity of ¢y,(8). In other
words, in §4 we will show that, as long as ¢y, (8) is strongly convex, the proximal-gradient method
within the ¢-th path following stage adapts to attain a fast geometric rate of convergence without
manually choosing a fixed Lgk). Here geometric convergence means that we need at most C'log(1/¢;)
proximal-gradient steps to obtain an ¢;-suboptimal approximate local solution.

is that, the adaptive
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4 Theoretical Results

We establish theoretical results on the iteration complexity and statistical performance of our
approximate regularization path following method for nonconvex learning problems.

4.1 Assumptions

We first list the required assumptions. The first assumption is about the relationship between A¢gt
and [[VL(8")]|oo-

Assumption 4.1. For least squares loss and logistic loss, we set Azt = C'\/logd/n. For semipara-
metric elliptical design loss, we set A\igt = C'||B*||11/log d/n. We assume

IVLB) oo < Age/5. (4.1)

Assumption 4.1 is a common condition that A should be large enough to dominate the noise.
For instance, for least squares loss we have

VL(B*) = %XT (X8 —y),

where X3* — y is in fact the noise vector. In Lemma C.3 we will show that, for least squares loss
and logistic loss, we have that ||VL(3)|« < Cy/logd/n holds with high probability under certain
conditions. Similarly, in Lemma C.4 we will prove that, for semiparametric elliptical design loss,

IVL(B)|loo < C'||B*[l11/10g d/n holds with high probability under certain conditions. Therefore,

our assumption about At and ||[VL(B*)|le holds with high probability.
In the sequel, we lay out another assumption on the sparse eigenvalues of V2£(3), which are
defined as follows.

Definition 4.2 (Sparse Eigenvalues). Let s be a positive integer. We define the largest and smallest
s-sparse eigenvalues of the Hessian matrix V2£(83) to be

pi(V2L,s) = sup o V2L(B)w : ol <5, [lo]2=1, BRI},
p_(V2L,s) = inf {UTVQE(,B)U ollo < s, Jvla=1, Be Rd} .

For least squares loss and semiparametric elliptical design loss, V2£(3) does not depend on S.
However, for logistic loss we have

1 1
T3 T3\’
1+exp(—x; B) 1+exp(x; 3)

V2L(B) = % Z XX} - (4.2)

which depends on 3. In Definition 4.2, the smallest s-sparse eigenvalue p_ (V2£, s) is obtained by
taking infimum over all 8 € R%. Consequently, for logistic loss, p_ (V2£, s) is always zero, because
in (4.2) we can take 3 such that |x! 8| — +o0 for all nonzero x;’s, which implies that V2£(3) goes
to an all-zero matrix. To avoid this degenerate case, for logistic loss we define the sparse eigenvalues
by taking infimum /supremum over all @ with ||3||2 bounded instead of over all 3 € R%. To unify
the later analysis for different loss functions, we overload the definition of sparse eigenvalues for
logistic loss as follows.
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Definition 4.3 (Sparse Eigenvalues for Logistic Loss). Let s be a positive integer. For logistic
loss, we define the largest and smallest s-sparse eigenvalues of V2£(3) to be

p(V2L,s) = sup {oV2LB)v: Jullo < 5. Jollz =1, ]l < R},
p—(V?L.s) = inf {o"V2LBw: oo <s, [ol2=1, 18]z < R}

where R € (0, +00) is an absolute constant such that ||8*||2 < R.

Note that in Definition 4.3, we implicitly assume that ||3*||2 is upper bounded by some known
absolute constant. Although it seems rather restrictive, this assumption is essential for logistic
loss. Otherwise, V2£(3*) might go to an all-zero matrix when ||3*||2 — 4+oc. When the curvature
of the objective function at B* is zero, a consistent estimation of 3* is impossible. Although this
assumption is necessary for theoretical purposes, we require no prior knowledge about the exact
value of ||3*[|2 in practice, since we can always set R to be a sufficiently large constant in our
algorithm (Line 3 of Algorithm 1).

Recall that, as shown in Line 8 and Line 12 of Algorithm 1, we impose an f» constraint of
radius R for all the proximal-gradient iterations at each path following stage. Therefore we have
Hﬁgk) H2 < R during the whole iterative procedure of our approximate path following method. Now
we are ready to present the sparse eigenvalue assumption on the Hessian matrix.

Assumption 4.4. Let s* = ||3*||o, where 3* is the true parameter vector. We assume there exists
an integer s > Cs* such that

p+(V2L,s* +28) < 400, p_(V2L,s* +28) >0
are two absolute constants. The constant C' > 0 is constant specified as follows.
In Assumption 4.4, the constant
C = 144k* 4 250, (4.3)

where k is a condition number defined as

i (VEL,s* 4 25) — ¢y
C (V2L 55+ 23) —

K € [1,+OO)- (4'4)

Here recall that (1 > 0 and (. > 0 are the two concavity parameters of the nonconvex penalty as
defined in regularity condition (a). To ensure that x € [1, +00), it is necessary to choose

(- <C'p_(V2L,s* +23) (4.5)
with constant C’ < 1, which automatically implies
C+ S 0/10+ (v2£7 8* + 2§)a (46)

because regularity condition (a) implies (y < (_, and we have p_ (Vzﬁ, s* +2§) < p+ (V2£, s* +2§)
by definition. Such a restriction on the concavity parameters suggests that the concave component
ox\(B) = Z;l:l ¢r(B;) of the nonconvex penalty is not allowed to be arbitrarily concave.
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Assumption 4.4 is a standard condition in high-dimensional statistical theory, which is closely
related to the restricted isometry property (RIP) proposed by Candés and Tao (2005). Similar
conditions have been studied by Bickel et al. (2009); Raskutti et al. (2010); Negahban et al. (2012);
Zhang (2012); Xiao and Zhang (2012). More specifically, for least squares loss, the RIP condition
assumes that there exists an integer s and some constant § € (0, 1) such that

1—-6<p_(V2L,s) < py(VL,s) <1406 (4.7)

In the following, we justify Assumption 4.4 for least squares loss with an example.

To illustrate that Assumption 4.4 is well defined, we assume that the RIP condition in (4.7) holds
with s = 877s* and 6 = 0.01. We set the concavity parameters of the nonconvex penalty in (a) to be
¢+ =0and (- = p_(V?2L,s)/20, e.g., for MCP defined in (2.2), we set b = 1/(_ = 20/p_(V2L,s).
In the following, we verify that there exists an integer s = 438s* that satisfies Assumption 4.4.

First, according to the RIP condition, we have

p+(V2L, s*425) = py (VEL,877s*) = pi (V2L,s) < (1+6) = 1.01 < +oo, (4.8)
p—(V2L,s*+25) = p_(V2L,877s*) = p_(V2L,s) > (1 —§) = 0.99 > 0. (4.9)
Second, we calculate the value of s 'in detail. Since the condition number  defined in (4.4) satisfies

e p+(V2£,s*+2§) ¢ pr (V2L, ) — ¢4 _ @.ij(V?ﬁ,s) - 20 1496 108,
p—(V2L,s*+25) — (- p_(V2L,s) = ¢~ 19 p_(V2L,s) ~ 19 1-¢

We now verify that s satisfies § > C's* in Assumption 4.4, where C is defined in (4.3). Plugging
the range 1 < k < 1.08 into the definition of C, we obtain C = 144x? + 250k < 438. Therefore, as
long as the RIP condition holds with s = 877s* and 6 = 0.01, we can find an integer s = 438s* that
satisfies Assumption 4.4. For least squares loss, the RIP condition is known to hold for a variety
of design matrices with high probability, which implies that Assumption 4.4 also holds with high
probability for these designs.

It is worth noting that the constants in this example are rather large for practical purposes.
We could expect that these constants would be much smaller if we manage to get a small constant
C'in (4.3). However, we mainly focus on providing novel theoretical insights in this paper, without
paying too much effort on optimizing constants.

Furthermore, we will justify Assumption 4.4 for £(3) being semiparametric elliptical design
loss and logistic loss in Appendix C.3. In Lemma 5.1 we will show that Assumption 4.4 actually
implies the strong convexity and smoothness of Ly (B) = L(B)+ QA(B) for B on a sparse set, which
are essential for establishing the fast geometric rate of convergence of the proposed optimization
algorithm and achieving the desired statistical properties of the local solutions. Hereafter, we use
the shorthands

P+ = Pyt (VQE, s*4+23), p_=p- (VQ,C, s* + 25) (4.10)

for notational simplicity.

4.2 Main Theorems

We first provide the main results about the computational rate of convergence. We then establish
the statistical properties of the local solutions obtained by our approximate path following method.
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4.2.1 Computational Theory

The next theorem shows that the proposed regularization path following method attains a global
geometric rate of convergence for calculating the full regularization path. Such a rate of convergence
is the fastest achievable rate among all first-order optimization methods.

Theorem 4.5 (Geometric Rate of Convergence). Under Assumption 4.1 and Assumption 4.4, we
have the following results:

1. Geometric Rate of Convergence within the ¢-th Stage: Within the t-th (t =1,...,N)
path following stage (Line 8 and Line 12 of Algorithm 1), the iterative sequence {,Bt(k)}zozo
generated by the proximal-gradient method (Algorithm 3) converges to a unique local solution

B,

e Within the t-th stage (t = 1,..., N —1), the total number of proximal-gradient iterations
(Lines 5—9 of Algorithm 3) is no more than C’log (4CV/s*).

e Within the N-th stage, the total number of proximal-gradient iterations (Lines 5—9 of
Algorithm 3) is no more than max {0, C'log (CAtgt\/?/ﬁopt) }

Here s* is the number of nonzero entries of the true parameter vector 3%,

C =2v21 k(1 + k), CV:2/kg<1_£%&O>, (4.11)

where x € [1,+00) is the condition number defined in (4.4).

2. Geometric Rate of Convergence over the Full Path: To compute the entire path, we
need no more than

(N —1)C'log (4CV's*) +Cﬂbg< (4.12)

1,...,(N — 1)—th Stages

CAtgt\/3>*>

€opt

N—th Stage

proximal-gradient update iterations (Lines 5—9 of Algorithm 3), where C, C’ are specified in
(4.11). Here eqpt < Mgt /4 is the optimization precision of the final path following stage (Line
12 of Algorithm 1), and N = log(\o/Atgt)/log(n 1) is the total number of approximate path
following stages, where n € [0.9,1) is an absolute constant.

3. Geometric Rate of Convergence of the Objective Function Values: Let ,@t be the
approximate local solution obtained within the ¢-th stage (Line 8 and Line 12 of Algorithm
1).

e Fort =0,...,N — 1, the value of the objective function decays exponentially towards

the value at the final exact local solution B,,,,, i.e.,

10572

¢>\tgt (Et) _¢>\tgt (B)\tgt) S CS* . 772(t+1)’ where C'= H

(4.13)
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e For t = N, we have

_ ~ 21
(ZS/\tgt (5N) —(ﬁ/\tgt (Bx\tgt) < (C,)\tgtS*) * €opty where C'= H (4-14)

Here p_ = p_ (Vzﬁ, s* —|—2§) > 0 is the smallest sparse eigenvalue specified in Assumption 4.4;
As defined in regularity condition (a), (- > 0 is the concavity parameter of the nonconvex
penalty, which satisfies (4.5).

Proof. See the next section for a detailed proof. O

Result 1 suggests that within each path following stage the proximal-gradient algorithm attains
a geometric rate of convergence. More specifically, within the t-th (¢ = 1,..., N) stage (Line 8 and
Line 12 of Algorithm 1), we only need a logarithmic number of proximal-gradient update iterations
(Lines 5—9 of Algorithm 3) to compute an approximate local solution Bt- Furthermore, within
the t-th path following stage, the iterative sequence { B,gk) }ZO:() produced by Algorithm 3 converges

towards a unique local solution B\)\t. In Theorem 4.8, we will show that B\At enjoys a more refined
statistical rate of convergence due to the usage of nonconvex penalty.

Result 2 suggests that our approximate path following method attains a global geometric rate
of convergence. From the perspective of high-dimensional statistics, the total number of stages
N scales with dimension d and sample size n, because N = log(Ao/Agt)/log(n™1), where 7 is an
absolute constant. From the perspective of optimization, given dimension d and sample size n, when
the optimization precision € is sufficiently small such that in (4.12) the second term dominates
the first term, then the total iteration complexity is C'log(1/€opt). In other words, we only need
to conduct a logarithmic number of proximal-gradient iterations (Lines 5—9 of Algorithm 3) to
compute the full regularization path.

Recall that we measure the suboptimality of an approximate solution with wy(3) defined in
(3.16), which does not directly reflect the optimality of the objective function value. Hence we
provide result 3 to characterize the decay of the objective gap @, (Bt) — DAg (ﬁ,\t gt). In detail,
(4.13) illustrates the exponential decay of the objective gap along the regularization path, i.e.,
t =1,...,N — 1, while (4.14) suggests that, the final objective function value evaluated at BN
is close to the value at the exact local solution B,\t «t» as long as the optimization precision €qpy is
sufficiently small.

Remark 4.6. Nesterov (2007) showed that the total number of line-search steps (Lines 4—7 of
Algorithm 2) within the k-th proximal-gradient iteration (Line 8 of Algorithm 3) is no more than

log(p+ — ¢+) — log Lnin
log 2 ’

2(k 4+ 1) + max {0,

where the sparse eigenvalue p, = py (V2£, s* +2§) > 0 is specified in Assumption 4.4; As defined in
regularity condition (a), ¢+ > 0 is the concavity parameter of the nonconvex penalty that satisfies
(4.6); Lyin is a parameter of Algorithm 3 (Line 3). Piecing the above results together, we conclude
that the total number of line-search iterations (Lines 4—7 of Algorithm 2) required to compute the
full regularization path is of the same order as (4.12).
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4.2.2 Statistical Theory

We present two types of statistical results. Recall that ﬁt is the approximate local solution ob-
tained within the ¢-th path following stage, while B,\t is the corresponding exact local solution
that satisfies the exact optimality condition in (3.14). In Theorem 4.7, we will provide a statistical
characterization of all the approximate local solutions { Bt}t]i1 attained along the full regularization
path. Remind in Theorem 4.5 we prove that within the ¢-th stage, the iterative sequence { Bt(k) }ZOZO
produced by the proximal-gradient method (Algorithm 3) converges towards a unique exact local
solution fl At In Theorem 4.8, we will provide more refined statistical propertles of these exact local
solutions {BM} ., along the full regularization path. Since ,BAN = ,B)Wgt, this result justifies the
statistical property of the final estimator.

Theorem 4.7 (Statistical Rates of Convergence of Approximate Local Solutions). Let d be the
dimension of B and n be the sample size. Recall that Et is the approximate local solution obtained
within the ¢-th path following stage (Line 8 and Line 12 of Algorithm 1). Under Assumption 4.1
and Assumption 4.4, we have

1B: — B%||, < CAV/s*, for t=1,...,N, (4.15)

where s* = ||3*[lo. Here N = log(Xo/Atgt)/log(n™!) is the total number of path following stages,
where n € [0.9,1) is a constant and Ay = n'Ag. In (4.15), the constant C' = (21/8)/(p— — (_),
where p_ = p_ (V2£ s* + 2§) > 0 is the smallest sparse eigenvalue specified in Assumption 4.4.
As defined in regularity condition (a), (- > 0 is the concavity parameter of the nonconvex penalty,
which satisfies (4.5).

Proof. See the next section for a detailed proof. O

Theorem 4.7 provides statistical rates of convergence of all the approximate local solutions
attained by our algorithm along the regularization path. Recall that in Assumption 4.1, we set

Mgt = Cy/logd/n for least squares and logistic loss, and Ay = C”||3*||1/log d/n for semipara-
metric elliptical design loss. For least squares and logistic loss, taking t = N in Theorem 4.7, we

21/8 21/8-C *logd
HﬁN B HQ - / )\tgt\/> 7/_ {,”S T(:g .

Hence, the final approximate local solution BN attains the minimax rate of convergence for param-
eter estimation. Similarly, for semiparametric elliptical design loss, we have

have

21/8 C’ s*logd

~ 1187y B

1By =8, <

which suggests that the rate of convergence of the final approximate solution is also optimal in the
regime where ||3*||; is upper bounded by a constant. Moreover, since 7 is an absolute constant, for
Bn_k with K being a positive integer constant, Theorem 4.7 gives

- K
|Bn-k — B, < _21/8<)\N— Vst < 21/8 77(_ Atgt V5%,
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which suggests that, the approximate local solution BN— K enjoys the same rate of convergence as
the final approximate local solution By, but with a looser constant C' = (21/8) -~ /(p_ — () >
(21/8)/(p- — C).

In the next theorem, we provide a refined statistical rate of convergence. Remind that, within
the t-th path following stage, the iterative sequence {5,@};0:0 produced by the proximal-gradient
method (Algorithm 3) converges to a unique exact local solution ,@)\t. The next theorem states
that B)\t benefits from nonconvex penalty functions and possesses an improved statistical rate of
convergence.

Theorem 4.8 (Refined Statistical Rates of Convergence of Exact Local Solutions). For the regu-
larization parameter \;, we assume that the nonconvex penalty Py, (8) = Z?Zl D, (B;) satisfies

pl/\t(ﬁj) =0, for |Bj| >, (4.16)
for some v, > 0. Let ST U S5 = S* = supp(B*) with |S]| = s7, |S5| = s5 and [S*| = s* = s] + s5.
For j € ST C S*, we assume |Bj| > v, while for j € S5 C S*, we assume ]ﬁ;‘| < v¢. Within the ¢-th

path following stage, let BAt be the unique local solution that { Bt(k)}ZO:O converges towards (as has
been shown in Theorem 4.5). Under Assumption 4.1 and Assumption 4.4, we have

1Br = 87l < CI(VEB) s,
St La;ée 18;]'s S5 : Small |3;]'s

L+ C'a/sy o, for t=1,...,N, (4.17)
———

where C = 1/(p— —¢_) and C" =3/(p_ — ().
Proof. See the next section for a detailed proof. O

In Theorem 4.8, the assumption in (4.16) applies to a variety of nonconvex penalty functions.
For SCAD in (2.1), we have v = a\;; While for MCP in (2.2), we have v, = bA\;. Theorem 4.8
suggests that, for “small” coefficients such that |3;| < v, the second part on the right-hand side of
(4.17) has the same recovery performance as in Theorem 4.7, while for “large” coefficients such that
|Bj| > 14, the first part in (4.17) possesses a more refined rate of convergence. To understand this,
we consider an example with £(3) being least squares loss. We assume that (Y| X = x;) follows a
sub-Gaussian distribution with mean xiT,B* and variance proxy o2. Moreover, we assume that the
columns of X are normalized in such a way that mane{1,...,d}{”XjH2} < y/n. Then we have
51

, < Coy[ (4.18)

H(V£B)s;

with high probability. Clearly, such a y/s}/n rate of convergence on the right-hand side of (4.18) is
significantly faster than the usual \/s*log d/n rate, since it gets rid of the logd term, and s} < s*.
In fact, v is the minimum signal strength above which we are able to obtain such a refined rate
of convergence. In the examples of SCAD and MCP, we have vy = CA;. Recall that {/\t}i\io is a
decreasing sequence. Hence, we are able to achieve this more refined rate of convergence for smaller
and smaller signal strength along the full regularization path. Moreover, for ¢t = N, the minimum
signal strength vy = Ay = Ayt = C/logd/n. Hence, the required minimum signal strength goes
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to zero as the sample size increases. Following a similar proof of Lemma C.3 and Lemma C.4 in
Appendix C, we can obtain similar results for logistic loss and semiparametric elliptical design loss.
This refined rate of convergence is sharper than the results in Loh and Wainwright (2013), in which
they didn’t sharply characterize the different conditions of S} and S3. Thus their obtained rate is
suboptimal compared to ours in the regime where all the nonzero coefficients of 3* are relatively
large (i.e., the signal strength is strong).

Besides the refined rate of convergence for parameter estimation in Theorem 4.8, in the next
theorem we prove that, the exact local solution ,@)\t also recovers the support of 3* under suitable
conditions. Before we present the next theorem, we introduce the definition of an oracle estimator,
denoted by BO- Recall that S* = supp(8*). The oracle estimator BO is defined as

~

Bo = argmin L(8), (4.19)
supp (8)CS™
BeQ

where Q = R? for least squares loss and semiparametric elliptical design loss, while Q = By (R) for
logistic loss with R specified in Definition 4.3. In the next Lemma, we show that BO is the unique
global solution to the minimization problem in (4.19) even for nonconvex loss functions, and has
nice statistical recovery properties.

Lemma 4.9. Under Assumption 4.4, the oracle estimator B\O is the unique global minimizer of
(4.19). If £L(B3) is least squares loss, we assume that (Y| X = x;) follows a sub-Gaussian distribution
with mean x} 3* and variance proxy o2, then the oracle estimator satisfies

180 = 87| < Cov/2/p- logs (4.20)

with high probability for some constant C, where p_ = p_ (VQE, s*+ 2§) > ( is the smallest sparse
eigenvalue specified in Assumption 4.4.

Proof. See Appendix C.12 for a detailed proof. O

Statistical recovery results similar to (4.20) also hold for logistic loss and semiparametric ellipti-
cal design loss under different conditions. These results are omitted here for simplicity. Lemma 4.9
suggests that, for a sufficiently large n and suitable minimum signal strength, the oracle estimator
,@o exactly recovers the support of 8*. More specifically, if the minimum signal strength satisfies
minjes« |8 > 2v for some v > 0, then we have

min
JES*

(Bo) | = min 151~ |Bo — & |, 2 2 — o2l /<2,

which implies that min;e g« (Bo)j‘ > v > 0 for a sufficiently large n. Meanwhile, recall supp (BO) C

S*. Therefore we have supp (BO) = 5*.

Remind that, within the ¢-th approximate path following stage, the sequence {Bt(k)}zo o bro-
duced by the proximal-gradient method (Algorithm 3) converges to a unique exact local solution
ﬁAt- In the next theorem, we prove that under Assumption 4.1 and Assumption 4.4, ,B)w is the
oracle estimator, and exactly recovers the support of 8* under suitable conditions.
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Theorem 4.10 (Support Recovery). For the regularization parameter \;, suppose that the noncon-
vex penalty P, (8) = Z?:l D, (B;) satisfies (4.16) for some v4 > 0. We assume the oracle estimator

Bo defined in (4.19) satisfies min;cg=

(,@o)j‘ > 14. Under Assumption 4.1 and Assumption 4.4, we
have 8), = Bo, which implies supp(8),) = supp(Bo) = supp(8*).
Proof. See the next section for a detailed proof. O

Recall that the assumption in (4.16) applies to a variety of nonconvex penalties including SCAD
and MCP, for which we have v, = C\; with C' > 0. According to our discussion for Lemma 4.9, if
the minimum signal strength satisfies min;eg+ ]ﬁj*| > 24, then for a sufficiently large sample size

(BO)J-‘ > 1. In this situation, Theorem (4.10) holds,

i.e., the exact local solution B\At exactly recovers the support of 3*. Since 1y = C'A\¢, the minimum
signal strength required for exact support recovery also shrinks with the decreasing sequence {)\t}fio
along the regularization path. In the examples of least squares and logistic loss, for t = N we have
vn = Chgt = C'y/logd/n. Therefore, for t = N the required minimum signal strength goes to
zero as sample size n goes to infinity.

n, the oracle estimator Bp satisfies min;eg+

5 Proof of Main Results

In this section we present the proof sketch of the main results. The desired computational and
statistical results rely on the strong convexity of the surrogate loss function L A(B), e.g., we need
L A(B) to be strongly convex to establish the geometric rate of convergence of the proximal-gradient
method within each path following stage. However, L A(B) is nonconvex in general, since Ly (B) =
L(B) + Qx(B), where L(8) is possibly nonconvex and Qy(8) is concave. In the following lemma,
we prove that £ A(B) = L(B)+ Qx(B) is strongly convex for 3 on a sparse set. This property is also
referred to as restricted strongly convexity in the literature (Negahban et al., 2012; Xiao and Zhang,
2012; Zhang and Zhang, 2012). In a similar way, we establish the restricted strong smoothness of

L1(8).

Lemma 5.1. Let 3,3 € R? be two sparse vectors that satisfy [|(8 — B)g=llo < 25, where 5 is
specified in Assumption 4.4 and S* = supp(B*). For £(8) being logistic loss, we further assume
IBll2 < R and ||8'||]2 < R, where R is specified in Definition 4.3. Then the surrogate loss function
L£:(8) = L(B) + Qx(B) satisfies the restricted strong convexity

EB) 2 En(8) + VEAB) (8 — B) + = |8 — 813
and the restricted strong smoothness
E(@) < Er(B) + VEAB) (B —8)+ St 8 - I
Here p_ = p_ (VQE, s* + 2§) and p+ = py (VQE, s* + 2§) are the sparse eigenvalues specified in

Assumption 4.4. As defined in regularity condition (a), (—, (4 > 0 are the concavity parameters of
the nonconvex penalty, which satisfy (4.5) and (4.6).
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Proof. See §C.4 in Appendix C for a detailed proof. O

A similar condition has been discussed by Negahban et al. (2012). The main difference is that,
our constraint set is a sparse subspace while that of Negahban et al. (2012) is a cone.

Note that in Lemma 5.1, the strong convexity and smoothness of L A(B) rely on the sparsity of
B3 and 3. Hence, we need to establish results regarding the sparsity of ,Bt(k) throughout the whole
iterative procedure. In the setting of logistic loss, we further need to provide an upper bound of
H,@gk) H2 In the sequel, we provide several important lemmas regarding these required properties

of ﬂ(k). The first lemma provides a characterization of any sparse 3 with certain suboptimality.
t

Lemma 5.2. We assume that 3 satisfies

B¢

with A > A¢gt, where wy(8) is the measure of suboptimality defined in (3.16). For logistic loss, we
further assume ||3||2 < R, where R > 0 is a constant specified in Definition 4.3. Under Assumption

0<3  wi(B) <A/2 (5.1)

4.1 and Assumption 4.4, 3 has the following statistical recovery property,

21
18 — B%||]2 < CAVs*, where C = p—/8C

Meanwhile, the objective function value evaluated at 3 satisfies
dA(B) — oA (B%) < C'N%s*,  where C' = —L—

Proof. See §C.5 of Appendix C for a detailed proof. O

Recall that in our approximate path following method, we use the approximate local solution
Bt_l obtained within the (¢ — 1)-th path following stage to be the initialization of the ¢-th stage
(Line 8 of Algorithm 1), i.e., ﬂt(o) = Btfl- By setting 3 = Etfl = ,Bt(o) and A = )\; in Lemma 5.2,
we can see that, if ﬁt,l is sparse and (\¢/2)-suboptimal, then the initial point ,@ﬁo) of the t-th stage
has nice statistical recovery performance. However, it remains unclear whether the rest of ,ng)’s
(k=1,2,...) within the ¢-th stage also have similar recovery performance. To prove this, we first
present Lemma 5.3, which shows that under the condition that 3 is sparse and ¢,(8) is close to

dA(B%), B has desired statistical properties. After Lemma 5.3, we will explain that if B§O) satisfies
this condition, then all the ,ng) 's (k =1,2,...) within the same path following stage also satisfy
this condition and thus enjoys nice statistical properties.

Lemma 5.3. Suppose that, for A > A, B satisfies
21/2

p——C-

For logistic loss, we further assume ||3||2 < R, where R is a constant specified in Definition 4.3.
Under Assumption 4.1 and Assumption 4.4, we have

1Bs=llo <5, ox(B) —oa(B) < CN%s*,  where C =

15/2

18— B2 < C'\s*, where C' = ﬁ
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Proof. See §C.6 of Appendix C for a detailed proof. O

Let A= )X; and B = ,@gk) in Lemma 5.3. It suggests that within the ¢-th path following stage,
all ,@gk)’s (k=1,2,...) have nice statistical recovery performance under three sufficient conditions:
(i) Each ng) is sparse; (ii) The objective function value ¢, (,@t(k)) is sufficiently close to ¢y, (8%);
(iii) For logistic loss, we further need || Bfk)Hg < R. For condition (ii), recall that if we set 3 = Bt(o)
and A = )\ in Lemma 5.2, then Bgo) being sparse and (A;/2)-suboptimal implies that ¢y, (ﬂt(o)) is
sufficiently close to ¢y, (8*). Since the proximal-gradient method ensures the monotone decrease of
{qﬁ,\t (,@t(k)) }ZOZO within the ¢-th path following stage (see Lemma C.1 of Appendix C), we have that
condition (ii) holds. Meanwhile, condition (iii) obviously holds because of the f3 constraint. To
establish the statistical recovery performance of all the ,Bik) ’s within the ¢-th stage, we further need

to establish the sparsity of ,ng) ’s to make sure condition (i) holds. To prove this, we present Lemma
5.4, which states that if 3 is sparse, then a proximal-gradient update operation on 3 defined in
(3.8) produces a sparse solution under certain conditions.

Lemma 5.4. Suppose that, for A > Ay, B satisfies

21/2
p—— G-

For logistic loss, we assume ||3||2 < R, where R is specified in Definition 4.3. Under Assumption 4.1

185l <3, 6a(B) — ¢a(8") < CN’s*, and L <2(py — 1), where C =

and Assumption 4.4, the proximal-gradient update step defined in (3.8) produces a sparse solution,

ie.,
(T8 R) g |, <5
Here we set R = +oo if the domain © in (3.8) is R%.
Proof. See §C.7 of Appendix C for a detailed proof. O

Consider 8 = ﬁt(k_l), A=XMand L = Lgk), Lemma 5.4 states that, if ,Bt(k_l) is sparse and the
objective function value ¢, (,Bik_l)) is close to ¢y, (3*), then ﬁt(k) = 7;:(k) iy (ﬁt(k_l); R) produced
by the proximal-gradient update step (3.8) is also sparse. Within the t—éhypath following stage, if
,@go) is sparse, wy, (,BIEO)) < A\¢/2, and for logistic loss H,@go) H2 < R, then by Lemma 5.2 we have

21/2

o1, (8,") — 6.(8") < As
p— — G-
Since {¢), ( t(k)) }Zozo decreases monotonically, we have
* » 21/2 .
ox (BY) — 62,8 < 6, (B") — 6,(8") < ; _/C A2s*, for k=1,2,....

Assume that we have Lgk) < 2(p4+ — (4) (which will be proved in Theorem 5.5). Applying Lemma
0 <5 (k=12,...). Meanwhile, we have H,ng)HZ < R due

5.4 recursively, we obtain H (ﬁgk))s—*
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to the ¢ constraint. Then according to Lemma 5.3, all ,B,gk)’s within the path-following ¢-th stage
have nice recovery performance, i.e.,

15/2

H,@t(k) —ﬂ*HQ S — MVs*t, for k=1,2,....

Furthermore, based on the sparsity of ng), we obtain the restricted strong convexity and smooth-
ness of Ly, (8) by Lemma 5.1, which enable us to establish the geometric rate of convergence within
the ¢t-th path following stage. These results are presented in Theorem 5.5.

Theorem 5.5. We assume that, within the ¢-th path following stage, the proximal-gradient method
in Algorithm 3 is initialized by Bt(o) and LEO), which satisfy

1) sl

For logistic loss we further assume H ,Béo) H2 < R with R specified in Definition 4.3. Then we have

 won(B) < A2, and L <2(py - ¢y).

<3

15,2

165l <5 181 =87l < =2 AVs, and LY <2001 = G1), fork=1,2,0...(52)

Moreover, the iterative sequence {,Bﬁk)}zozo converges towards a unique exact local solution B\,\t,
which satisfies H (BAJ@ o < s and the exact optimality condition that w), (,B,gk)) <0.

To achieve an approximate local solution Bt such that wy, (Bt) < A\t/4, we need no more than
C’'log (4C\ﬁ ) proximal- gradlent iterations defined in Lines 5—9 of Algorithm 3. To achieve an

approximate local solution ,Bt such that wy, (,Bt) < €opt, We need no more than C'log (C’ AVs*/ eopt)
proximal-gradient iterations. Here

C_2¢m.¢dl+@,<7_2/k%<1—b@@>’

where k is the condition number defined in (4.4). In other words, within the t-th path following
stage, the proximal-gradient method converges to 3, with a geometric rate of convergence.

Proof. See §C.8 of Appendix C for a detailed proof. O

To prove that the geometric rate of convergence and desired statistical recovery properties hold

within all path following stages, i.e., t =0, ..., N, we need to verify that the conditions of Theorem

5 hold at each stage. We prove by induction. Suppose the initialization of (¢ —1)-th path following
stage satisfies

<3 w(B) <A\/2, and L <20 —¢p). (5.3)

182 o
Applying Theorem 5.5, we obtain

1B ) sl <3 L, <2(pr —¢4). for k=1,2,....
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Consequently, the approximate solution Et,l produced by the (t—1)-th stage satisfies H (Et,l) gl <

S, while L;_1 satisfies L;—1 < 2(p4 — (4). Since we warm start the ¢-th path following stage with
go) = (B;—1 and LEO) = L;—1 (Line 8 of Algorithm 1), we have

1875

Moreover, note that the stopping criterion of the proximal-gradient method ensures wy, |, (ﬁt,l)

<3, L <2(py —¢4). (5.4)

0

At—1/4 (Line 9 of Algorithm 3). In Lemma C.8 of Appendix C we will prove this implies wy, (B—1)
At/2. Consequently, we have

wa, (B) < A2, (5.5)

Therefore, we know that (5.3) implies (5.4) and (5.5). We will verify (5.4) and (5.5) hold for ¢ = 0
in the proof of Theorem 4.5 in Appendix C.9. By induction, we have that (5.4) and (5.5) hold for
t=0,...,N. As a consequence of Theorem 5.5, all path following stages have geometric rates of
convergence along the solution path, which implies the global geometric rate of convergence. See
Appendix C.9 for a detail proof. Meanwhile, every ,Bék) possesses desired statistical properties, i.e.,

89 = Bl < AV, for t= L N and k=01

which further leads to the statistical rates of convergence of { Et}i\il in Theorem 4.7, the more re-

fined rates of convergence of { ,@ M }i\il in Theorem 4.8, and the support recovery results in Theorem
4.10. See §C.10—8C.12 of Appendix C for detailed proofs respectively.

6 Numerical Results

We provide numerical results illustrating the computational efficiency and statistical accuracy of
the proposed method. We consider two settings: (i) Semiparametric elliptical design regression
with the MCP penalty; (ii) Logistic regression with the MCP penalty. In the first setting, both
the loss and penalty functions are nonconvex, while in the second only the penalty function is
nonconvex.

In the first experiment, we consider £(3) being semiparametric elliptical random design loss
and Py (3) being the MCP penalty. The detailed settings are as follows:

e The design matrix X € R™*? contains n = 500 independent realizations of a random vector
X € R? with d = 2500, which follows a t-distribution with 5 degrees of freedom, zero mean
and correlation matrix 3% . We set the correlation matrix X% to be (£%); ; = 0.8=7! (1 <
i,7 < d). Meanwhile, in the i-th data sample the response y; follows a univariate ¢t-distribution
with 5 degrees of freedom, mean x;-rﬁ* and variance 0.01. Here x;-r is the ¢-th row of the design
matrix X, and 3* is the true parameter vector specified as follows.

e For the true parameter vector 3* € R?, we set the first 100 coordinates of 8* to be independent
realizations of a standard univariate Gaussian distribution (zero mean and unit variance), and
the other coordinates to be zero, i.e., we set s* = [supp(8*)| = 100.
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Figure 3: Semiparametric elliptical design regression with MCP: (a) Plot of the objective function
value ¢ (B,gk)) along the entire regularization path; (b) Zoom-in plot of ¢, (,8](\’;)) (log-scale) within
the N-th path following stage; (c) Plot of the recovery error H ,Bék) — ,B*HQ. Here we illustrate each
path following stage (¢t = 1,..., N) with a different color. Note that each point in the figure denotes
,Bék), which corresponds to the k-th iteration of the proximal-gradient method (Algorithm 3) within
the t-th path following stage.

e For the sequence of regularization parameters {)\t},{io, we set A\igt = 0.05 by cross-validation
and Ao = [|[VL(0)|loc = HRX,YHOO‘ Here IA{Xy € R? is defined in (3.13). In our experiment,
we fix the random seed to be “2” in MATLAB. In this setting, we observe Ay = 2.8516. We set
n = 0.9015 so that the total number of regularization parameters is N = log(Agt/Xo)/ logn =
39.

e For the MCP penalty defined in (2.2), we set the tuning parameter to be b = 1.1. We set the
optimization precision within the N-th path following stage to be €,pt = 1075, Meanwhile,
we set Lyin = 1076,

In Figure 3(a) we illustrate the convergence of the objective function value ¢y (,ng)). In Figure
3(b) we zoom into the N-th path following stage and illustrate the geometric rate of conver-
gence. In Figure 3(c) we illustrate the statistical recovery performance of the iterative sequence
{,Bt(k)}iil (k=0,1,...) attained by our path following method, i.e., H,@gk) — ,6'*“2.

In the second experiment, we consider the setting where £(3) is logistic loss and Py(3) is the
MCP penalty. The detailed settings are as follows:

e The design matrix X contains n = 50 independent realizations of a random vector X € R?
with d = 100, which follows a zero mean Gaussian distribution with covariance matrix 10 - I.
Here I € R%*? is the identity matrix. Corresponding to the i-th data sample, the response y; €
{0,1} follows a Bernoulli distribution that satisfies P(Y = 0| X =x;) = (1 + exp(xiTﬁ*))_l.
Here xiT is the i-th row of the design matrix X, and 3* is the true parameter vector specified
as follows. We set the radius R of the constraint set Q = By(R) in (3.8) to be 10? (Line 3 of
Algorithm 1).

e For the true parameter vector 3* € R%, we set the first 3 coordinates of 3* to be 20, and the
other coordinates to be zero, i.e., we set s* = [supp(3*)| = 3.
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e For the regularization parameters, we set Aigy = 0.12 by cross-validation and A\g = ||[VL(0)||sc-
In our experiment, we fix the random seed to be “2” in MATLAB. We observe that A\g = 1.2.
Correspondingly, we set n = 0.9035 so that the total number of regularization parameters
along the regularization path is N = log(Ag/Mo)/ logn = 22.

e For the MCP penalty defined in (2.2), we set the tuning parameter to be b = 2. We set the
optimization precision within the N-th path following stage to be €op; = 1076, Meanwhile,
we set Ly, = 1076,

Similar to Figure 3, in Figure 4 we illustrate the convergence of the objective function value, as
well as the statistical recovery performance of the iterative sequence {Bt(k)}ivzl (k=0,1,...) that
is attained by our path following method.
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Figure 4: Logistic regression with MCP: (a) Plot of the objective function value ¢y (,@t(k)) along the
entire regularization path; (b) Zoom-in plot of ¢y (,@J(\If)) (log-scale) within the N-th path following
stage; (c) Plot of the recovery error Hﬁgk) — [3*”2.

7 Conclusion

In this paper, we provided an integrated theory for penalized M-estimators with possibly noncon-
vex loss or penalty functions. These problems are motivated by generalized linear models with
nonconvex penalties and semiparametric elliptical design regression, as well as a broad range of
other applications. Since it is intractable to compute the global solutions of these problems due to
the nonconvex formulation, we need to establish a theory that characterizes both the computational
and statistical properties of the local solutions obtained by specific algorithms. For this purpose, we
proposed an approximate regularization path following method which serves as a unified framework
for solving a variety of high-dimensional sparse learning problems with nonconvexity. Computa-
tionally, our method enjoys a fast global geometric rate of convergence for calculating the entire
regularization path; Statistically, all the approximate and exact local solutions along the regular-
ization path attained by our method enjoy sharp statistical rate of convergence in both estimation
and support recovery. In particular, we provide a sharp theoretical analysis that demonstrates
the advantage of using nonconvex penalties. This paper demonstrates that under suitable condi-
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tions, the entire regularization path of a broad class of nonconvex sparse learning problems can be
efficiently obtained.
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A TIllustration of Regularity Condition (¢) for Nonconvex Penalty

Ao > al (a = 21) Ao < aM (a = 21)
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Figure 5: An illustration of regularity condition (e) for MCP and SCAD: (a) Plots of ¢} (8;) and
0, (Bj) for MCP with A\; = 1, A2 = 2 and b = 2; (b) Plots of ¢} (8;) and ¢}, (8;) for SCAD
with A\; = 1, Ay = 2.5 and a = 2.1; (c) Plots of ¢} (8;) and q),(8;) for SCAD with \; = 1,
A2 = 1.5 and a = 2.1. Subfigure (a) shows that regularity condition (¢) holds for MCP. For SCAD,
we consider two cases: Ay > a)j, as illustrated in (b); Ao < a\; as illustrated in (c). In the
first case, |[AD| = A1 < (a — 1)A\;1 < |A\1 — Ag| since a > 2 and A9 > aX;. In the second case,
|B'E| = (A2 — \1)/(a — 1) < |A1 — A2, because the slope of EC" is (—1/(a — 1)) with a > 2.
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B Derivation of Optimization Update Schemes

To simplify the notation, we denote Lg ) by L, ﬁt by @', and \; by X in the rest of this section.
Derivation of (3.10): If Q = R?, then we have

Tea(B400) = argmin {¢x(8;8')}

BeR

— axguin {£(8) + VEA(B)T (8 - ) + 518 - 81 + Ml

BeRd

= argmin{;H,B - (,@’ — 2VE>\(,3')>

BeR

2
v zu,eul}. (B.1)

2

B

It is known that the minimizer of (B.1) can be obtained by soft-thresholding 3 with the threshold
of \/L, i.e.,

0 if [3;] < A/L,

sign(B;) (18| — A/L) if [Bj| > A/L. 2

(Tin(85-+00)) , = {
Therefore we obtain the first update scheme (3.10) for Q = R

Derivation of (3.12): If Q = By(R) = {B: ||B]|3 < R?}, by Lagrangian duality we can trans-
form the original optimization problem with constraint into an unconstraint optimization problem.
Hence, there exists a Lagrangian multiplier 7 > 0 such that

(85 ) = axgmin {u1,3(8:)} = argunin {01.1(5: 8) + 5 1813} -
BeRd

BeBa(R

Consequently, based on (B.1) we have

TLa(B5R) = argmin {Zm’) + VLB (BB + guﬁ =B+ MBI + ;HBH%}

BeR4

L ~ T
= augmin {231 (19 - VE@) B+ Mol )
BeERd
1 2 A
= azgelgoiln{Q B — <L+’B —ﬁvﬁ\(ﬁ )) 2+L—|—7-Hﬂ”1}’ (B.3)
L -
L+7

where 8 = 8 — VLx(8')/L. The minimizer of (B.3) can also be obtained by soft-thresholding, i.e.,

A
0 ol
(E,A(ﬂ/§R))j: . L - A . 3 A (B.4)
Slgn<L+ /B><L+T’BJ|_ ) 1 L+r|ﬁj|>f+7‘
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Comparing (B.4) with (B.2), we have

L
L+

Tia(BR) = Te (B 400). (B.5)

In other words, we can obtain the constraint solution 7z, x(8; R) by first calculating the unconstraint
solution 77, (8'; +00), and then rescaling it by a factor of L/(L+7). Note that here the Lagrangian
multiplier 7 is unknown. We discuss the following two cases:

e If the constraint 3 € By(R) is not active, then we have 7 = 0 by complementary slackness,
which implies

T8 R) = Toa(B'; +00).

Since the constraint is not active, we have
ITLa(Bs R)ll2 = I TL (B +00) 2 < R.
e If the constraint 3 € By(R) is active, then we have 7 > 0 by complementary slackness. In
this case, the minimizer 77, x(8'; R) lies on the boundary of By(R). By (B.5) we have

L+
L

To obtain Tz, A(8'; R), we project Tr A(8'; +00) onto Ba(R), which can be achieved by

;o BT (B +00)
TealBR) = e B ool

L+
R > R.
I >

1Tz A(Bs +00) 12 = ITLA(B's R)l2 =

Therefore we obtain the second update scheme (3.12) for Q = Bay(R).

C Proof of Theoretical Results

To analyze the computational properties of our approximate regularization path following method,
we first provide several useful lemmas about Nesterov’s proximal-gradient method used within each
stage of the path following method.

C.1 Preliminary Results about the Proximal-Gradient Method

Recall that the objective function can be formulated as ¢y, (8) = L, (8) + M¢||B]1 where £y,(8) =
L(B) + Qx,(8), while 'QbLEk))\t (B;Bﬁkfl)) is the local quadratic approximation of ¢,,(3) at ngil)
defined in (3.7). The following lemma, which adapts from Nesterov (2007), characterizes the decre-
ment of the objective function.

Lemma C.1. Under Assumption 4.4, we assume H (ﬁt(kfl))é?

specified in Assumption 4.4. For any Lgk) > 0 and fixed Ay € [A¢gt, Ao), we have

o < 8, where s is the positive integer

B 1,(F) 7
o (87) < on(8"7Y) = =518 - BV
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Recall that as defined in (3.16), wy(3) describes the suboptimality of approximate solutions. The

following lemma, which follows from Nesterov (2007), upper bounds wy, (,Bik)) with H,@gk) — ék_l) Hz

Lemma C.2. Under the assumptions of Lemma C.1, then we have

W (@Ek)) < (Lgk) +pr—C) Hﬁt(k) — gy 5

where p; = p (V2[,, s*+ 2§) is the sparse eigenvalue specified in Assumption 4.4; As defined in
regularity condition (a), (; > 0 is the concavity parameter of the nonconvex penalty, which satisfies
(4.6).

C.2 Upper Bounds of [|[VL(8%)|«

In this section, we provide upper bounds of ||VL(8%)||~ to justify Assumption 4.1.

Lemma C.3. For least squares regression with sub-Gaussian noise and logistic regression, we

-----

Then we have

logd

IVL(B)]leo <C (C.1)

n

with probability at least 1 — d~!, where C' is a constant.

Proof. See Candés and Tao (2007); Zhang and Huang (2008); Zhang (2009); Bickel et al. (2009);
Koltchinskii (2009a); van de Geer and Biithlmann (2009); Negahban et al. (2012); Wainwright (2009)
for a detailed proof. O

Lemma C.4. For semiparametric elliptical design regression, we have, with probability at least
1—(d+1)7%2-2(d+1)73,

log d
VLBl < ClIB7 1/ =27, (C:2)

where C' is a constant.

Proof. See §D.3 of Appendix D for a detailed proof. O

C.3 Justification of Assumption 4.4

In this section, we show that Assumption 4.4 holds with high probability for semiparametric ellip-
tical design loss and logistic loss.

First we provide two lemmas regarding the largest and smallest sparse eigenvalues of the Hessian
matrix V2L£(3) of semiparametric elliptical design loss and logistic loss. Then we will use them to
justify Assumption 4.4.
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Lemma C.5. Let n be the sample size, d be the dimension of 3, and Z € R%t! be an elliptically
distributed random vector defined in §2.2. The correspondmg covariance matrix estimator K z €
R(@D*(d+1) s defined in (2.7), while its submatrix Kx € R?* is defined in (3.13). The Hessian
matrix of semiparametric elliptical design loss is V2£(8) = K x. Let s be a positive integer that
indicates the sparsity level. Under suitable conditions (see Han and Liu (2013) for details), for a
sufficiently large n, there exists an s such that p_ (V2L’, s) > 0 and p4 (VZE, 3) < 400, both with
probability at least 1 —2d~! —3d~2. Here p, (VQE, s) and p_ (VQE, s) are defined in Definition 4.2.

Proof. See §D.2 in Appendix D for a detailed proof. O

In the following we provide a similar lemma for logistic loss. RIP-like conditions for logistic loss
have been widely studied (van de Geer, 2008; Negahban et al., 2012; Loh and Wainwright, 2013).
To simplify the analysis, we utilize a result from Loh and Wainwright (2013) to prove the following

lemma.
Lemma C.6. Let n be the sample size, d be the dimension. Suppose X = (x1,...,x,)T € R**¢
is a sub-Gaussian design matrix, where x1,...,x, are independent realizations of a sub-Gaussian

random vector with zero mean, unit variance proxy and independent entries. For logistic loss, the
Hessian matrix is defined in (4.2). Let s be a positive integer that indicates the sparsity level, and R
be a positive constant. For a sufficiently large n, there exists an integer s such that p_ (VQE, s) >0
and py(V2L,s) < 400, both with probability at least 1 — C'exp(—C’n), where C,C”" > 0. Here
p— (V2£, s) and py (VQL, s) are defined in Definition 4.3.

Proof. For logistic loss, Loh and Wainwright (2013, Proposition 1) showed that, for 3,3 € R¢ such
that ||3]l2 < R and ||3'||2 < R, we have

2C’ logd

L(B) - L£(B) - VLB (B -B) < ClB-BI3+ =2

LB -LPB)-VLPB)T (B -B) > CIB-B3-C"-

=118 -8l (C.3)

logd
o 2218 - A3, (C.4)

both with probability at least 1 — C" exp(—C""n). All these constants are positive. By Taylor’s
theorem and the mean value theorem, we have

L(B) = L(B) + VLB (B~ B) + %(ﬂ’ = B)'VIL(B + (1-7)B) (B - ),

where v € [0, 1]. Plugging this into the left-hand sides of (C.3) and (C.4), we obtain
C logd
S8 = BIVLOE +(1-)B)(B ~B) < CIE B3+ % g - B3, (C)
1
2B - BIVEL(B +(1-7)B)(B -B) = B -8l -C"- 18" =8I (C.6)

Assume that 3 and 3’ satisfy |3 — Bllo < s, which implies ||3' — 8|1 < \/g |8 — Bll2. Plugging
this upper bound of |3 — 3|1 into the right-hand sides of (C.5) and (C.6), we have

2 I
(C+3C slogd

log d

L@ - BTVLOB +(1-B) (@ - B) < )-lIs - sl (c)

slogd

36 - BIVLOH (=B E -8 = (- TED) g g

36



In (C.7) and (C.8), taking n > C"-slog d/n with a sufficiently large C" > 0, and dividing ||3’ — 3|3
on both sides, we obtain

¢ _1 (B-p)" 2 (B'-8)

— <5 VLB +(1-7)B

<2 g-pl ¥ 0P 0 e,
Let v = (8'—03)/||8' —B||2- Obviously, v is an arbitrary vector that satisfies [|[v||2 = 1 and ||v]|o < s.
Taking B’ — B, we have ¢’ < vIV2L(B)v < 4C for any 8 < R and any v such that ||v|s = 1
and ||v||op < s. By Definition 4.3 of p_ (V2L s) and p4 (V2L, s), we have p_(VZL,s) > C’ > 0 and
P+ (VQE, 3) < 4C < +o0. Thus we conclude the proof. O

<2C. (C.9)

Equipped with Lemma C.5 and Lemma C.6, we are ready to justify Assumption 4.4 for semi-
parametric elliptical design loss and logistic loss. Recall that s* = ||3*||o, where B* is the true pa-
rameter vector. We assume that Lemma C.5 or Lemma C.6 holds with s = Cs*, p4 (V2L', S) =
and p_ (VQE, 5) = (", where C satisfies

20"\ ? 20"
Cc>2 (144- <C”> + 250 - <C’” )) + 1. (C.10)
Meanwhile, we set the concavity parameter of the nonconvex penalty to be (;+ =0 and (- = C"/2.

Now we verify that there exists an integer s = (C'—1)/2-s*, where C satisfies (C.10), that satisfies
Assumption 4.4. Note that the condition number « defined in (4.4) is
(V2L s +23) — ¢ pe(VPL,C5%) = (e py(VPLs) — ¢ c’ %
(V2L s+ 235) — - p_(V2L,Cs%) — ¢ p_(V2L,s)—C.  C"—=C"/2  C"

Since 5 = (C' —1)/2 - s* where C satisfies (C.10), we have

/ !/
(144 (25,> + 250 - (iﬁ)) - s* = (144k% 4 250k) - 5

Hence we find an s that satisfies the requirements in Assumption 4.4.

C.4 Proof of Lemma 5.1

Proof. Recall that Q,(3) is the concave component of the nonconvex penalty Py (3), which implies
—Q,(B) is convex. Meanwhile, recall that Q)(3) = Z;-l:l qx(Bj), where ¢\ (5;) satisfies regularity
condition (a). Hence we have

—(—(B) — B))* < (dA(B)) — dA(B))) (B — Bj) < —C4 (B} — B;)*,

which implies the convex function —Q,(3) satisfies

(V(-2:) - V(-:8) (7 -8) < I8 -pl3 (1)
(V(-2:() - V(-:8) (8- B) > g~ B3 (C12)
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According to Nesterov (2004, Theorem 2.1.5 & Theorem 2.1.9), (C.11) and (C.12) are equivalent
definitions of strong smoothness and strong convexity respectively. In other words, — Q) (3) satisfies

~0\(8) < ~Q:(B) - VOB (B -+ 518 - Bl (C.13)
~0\(8) > ~Q(8) - VB (B - B)+ 18 - Bl (C.14)

For loss function £(3), by Taylor’s theorem and the mean value theorem, we have

L(F) = £(B) + VLB (8~ B) + 3 (8 ~ BT VLA +(1-1)F)(F ~B),  (C15)

where v € [0, 1]. Note that we assume ||(8" — B8)gz|lo < 25, which implies ||3" — 8|0 < s* + 25. For
logistic loss, we assume [|B|]2 < R and ||@||2 < R, which implies [|[y8 + (1 —v)3|l2 < R by the
convexity of £2 norm. By Definition 4.2 and Definition 4.3, we have

B -B)" (8" —B)
18" = Bll2 18" = Bll2

Plugging this into the right-hand side of (C.15), we have

p—(V2L,s* +28) < - V2L(vB+ (1 — B ) mo——i < py(V2L, 5" +23).

p— (VQL’,, s* + 2§)
2

P+ (VQE, S* + 2;)
2

£B) > LB +vLep) @ -m8)+ 18’ — B3, (C.16)

LB) < LB)+VLPB) (B -B)+ 18’ — B3 (C.17)

Recall that £,(8) = L(8) + Qx(8). Subtracting (C.13) from (C.16), and (C.14) from (C.17), we
obtain

p—(V2L,s* +25) — (-

Lr(B) = LB+ VLB (B - P) + 5 18’ - B3
~ ~ ~ V2L, s +23) — ,
EE) < EB)+VEB)(E -4+ LTI G gy
Then we conclude the proof. ]

C.5 Proof of Lemma 5.2

Proof. Results for Statistical Recovery: Since [[Bg=/o < 5 and [|B%[lo = 0, we have |[(8 —
B*)g=|| < 5. For logistic loss, we further have ||8|2 < R and ||8*[]2 < R where R is specified in
Definition 4.3. Thus Lemma 5.1 gives

ENBY) = L)+ (8 — B VEB) + e - I3 (©18)
EB) > EnB)+ (88 VENB) + 8 - 813 (©19)

Adding (C.18) and (C.19) and moving (8* — 8)TVL(8) to the left-hand side, we obtain
(B=BVLAB) = (B - B")VLAB) + (p- = C)IB" = B3 (C.20)
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Let & € 0||8||1 be the subgradient that attains the minimum in

B-8)"

)= 2, 355 o= gty (7 36 |

Then we have

B-B) oz
or(8) = ya { =50 (V28 +29)}.

Adding A(B8 — B*)T¢ to the both sides of (C.20), we obtain
(B— B (VLAB) + 7€) = (B B)VLAB) + (p- — C)18" — Bll3 + AM(B - B¢
Since B8* € Q, by (C.21) we have
(B-8)"

7('8_'8*)T C max{ —— "=/ (y© =w
o (VBN +2¢) < o | EZE0E (920(8) +29) | = n8).

Recall that we assume wy(3) < A/2, we obtain
(8= B (VLA(B) + ) <A/2- 1B =B

Plugging (C.23) into the left-hand side of (C.20), we obtain

M2:118 = B = (8- B)VLN(B) +(p- = C)IIB" = BIE+ M8 — B¢,
~~ —
(i) (i)
Now we provide lower bounds of terms (i) and (ii) in (C.24) respectively.
e Bounding Term (i) in (C.24): Recall that £,(8) = £(8) + Qx(8). We have
(B-BVLAB") = (B-B)VLB)+(B-B)VAUB).
(i).a (i).b

Separating the support of 3 — 3* into S* and S*, we obtain

1B =8 = (B8l + (B —B)s-

Then for term (i).a in (C.25), we have

B-B9)TVLPB) > —B-BhIVLB) s

(C.21)

(C.22)

(C.23)

(C.24)

(C.25)

B =Bz 1 IIVLB) oo = (B = B)s[1[VL(B) [[oo- (C-26)

For term (i).b in (C.25), we have

(B-B")TVANB") = (B B)E(VAABY)) g + (B - B)E(VONBY)) 5=
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Note that Q,(8*) is separable. We have

(B=B)5(VOB)) g = X (Bj = B7) - d\(B]) = (B—B"EVANB), (C.28)
JES*
(B-B)5 (VOB )) g = D _(Bi = B7)-dh(B) = D> _(B; = B])-¢A(0) =0,  (C.29)

jes* jes*

where the second equation in (C.29) is because B; =0forj e S*, and the third is by regularity
condition (c) that ¢} (0) = 0. Plugging (C.28) and (C.29) into the right-hand side of (C.27),
for term (i).b in (C.25) we obtain

(B—=BVAANB) = (B~ 85 VAB) = ~[I(B~B)s:[LIVAUB s  (C.30)

Plugging (C.26) and (C.30) into the right-hand side of (C.25), then for term (i) in (C.24) we
obtain

(8- B")"VLABY) (C.31)
> — (B =B hIVLB) oo = (B = B%) s+ 11 IVLB) oo — (B = B) s 111V OAB") [l oo-

Bounding Term (ii) in (C.24): For term (ii) in (C.24), by separating the support of 3 — 3*
into S* and S* we have

AB—B)TE=N(B—B")§-Ls +A (B B) b - (C.32)
(ii).a (ii).b

For term (ii).a in (C.32), since & € 9|31, we have [|€s+||co < ||€]|cc < 1, which implies
(B=B5€s: = —[€s- 1| (B = B)s- 1 = =I1(8 = B+ Ir (C.33)

For term (ii).b in (C.32), since 8% = 0, we have (8 — 8)g: = Bg=. Recall that £ € 9|8]):.

For f8; # 0, since &; = sign(p;), we have §3;&; = |B;]. For ; = 0, we have 5;¢; = |3;] = 0.
Therefore, we obtain

(B—B"5bg =BLés =D Bi& =D 1B =Bzl = (B 8")glh-  (C.34)

jes* jes*
Plugging (C.33) and (C.34) into the right-hand side of (C.32), we obtain

AB = B¢ > -M(B—B)s Il + M|(B = B) g1 (C.35)

Plugging (C.31) and (C.35) into the right-hand side of (C.24), we obtain

A28 =Bl (C.36)

> —[|(B -85 VLBl — (B — B s VLB oo — (B = B)s+ 111V AB*) ||
(i) in (C.24)
+(p— = CNIB* = Bl3 —AIB = B sl + Al(B = B ) gl -

g

(ii) in (C.24)
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Again, we separate the left-hand side of (C.36) as \/2-||B — B*[l1 = A/2-|[(B — B ) g1 + A/2-
(B — B*)s+||1. Rearranging the terms, we obtain

(- = CNIB =B 13+ (N2 = VLB o) 1(B = B) 5= 1 (C.37)
(i)
< (3M/2+ VLB oo + [[VAB) o) 1B = B) s+ |1
(ii) (iii)

For term (ii) in (C.37), by (4.1) in Assumption 4.1 and A > gt we have
IVL(8") oo < Auge/8 < A8, (C.38)

Meanwhile, (C.38) also implies that term (i) in (C.37) is positive. Recall that Q(3) = Ztl ax(55),
where ¢)(3;) satisfies regularity condition (d). Hence for term (iii) in (C.37) we have

IV QA(B") e = masx g4(5)] < (C:39)

In summary, from (C.37) we obtain

< (BM2+ VLB oo + VOB o) 1B — B%) s+ In
< (BA2+A/8+ N8B —B8%)sIh

< 210/8-Vs*(|(B — B%)s+ |l

< 210/8- V5B - B2 (C.40)

(p- = C)IIB = B*I13

According to (4.5), we have p_ — (_ > 0. Therefore, (C.40) gives

8-l < 2 (C.41)

which implies the first conclusion.

Results for the Objective Function Value: Note that on the right-hand side of (C.19), we
have p_ — (_ > 0, which gives

LA(B7) = Lx(B) + (B" = B)TVLA(B). (C.42)
Meanwhile, since € € 9|81, by the convexity of £; norm we have
MBI = MBI + A8 - B)"¢. (C.43)
Recall that ¢x(8) = £1(8) + A||B]l1. Adding (C.42) and (C.43), we obtain
ox(87) = 6A(B) + (B — B)T (VLA(B) + \E), (C.44)

which implies
PA(B) — oA(BY) < (B — BT (VLA(B) + XE) < A/2-]1B - B*|)1.
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Here the second inequality follows from (C.23), which is a direct consequence of the assumption
that wy(B) < A\/2. Separating the support of 3 — 3* into S* and S*, we obtain

OAB) —oA(B") < A/2-IB=B%h < A/2- (B =B s+l +A/2-[[(B =B )=l (C.45)

Now we provide an upper bound of |[(8 — 3%)g=||1 on the right-hand side of (C.45). Note that, on
the left-hand side of (C.37), we have p_ — (_ > 0, which gives

(A2 = IVLB) ) 1B = B)5= 11
< (BA2+ VLB oo + IVOAB) o) 1B — B) s+ |1 (C.46)

Note that in (C.47) we have [|[VL(8%)|lcc < A/8 by (C.38), and [|[VOA(8")||cc < A by (C.39). Hence
we have

(A2 = MO)II(B — B gl < (BA/2+ A/8 + VI|(B - B)s- 1. (C.47)

which implies [[(8 — 8%)g=[1 < 7||(8 — B%)s+|1. Plugging this into the right-hand side of (C.45),

we obtain

A (B) = 6a(8") < (V24 TA/2)[[(B — B )s+ |11 < AW [(B — B%)s- |2 < 4AVs*||B — B*||2.(C.48)
Plugging the upper bound of |3 — 8*||2 in (C.41) into the right-hand side of (C.48), we obtain

21/2
p—— G-

Hence we reach the second conclusion. O

A2s*.

PA(B) — oA(B7) <

C.6 Proof of Lemma 5.3

Proof. Since [|Bgz(lo < s and [|B%[lo = 0, we have (8 — 8%)gz o < 5. For logistic loss, we further
have ||B]l2 < R and ||3*||2 < R, where R is specified in Definition 4.3. Therefore, Lemma 5.1 gives

—C
2

LA(BY) + (B—B") VLB +° 18* — BII3 < LA(8). (C.49)

Recall that ¢x(8) = £x(8) + A||8]|1. Hence, from our assumption that

PA(B) — A (B") < p_21_/2<_>\28*
we obtain
Ex(B) - La8) + MBI - 16711) < 222 (C.50)

Plugging (C.49) into the left-hand side of (C.50), we have

e 21/2
L= - Bl + A1 — 1871 <

A2,

(B —B)TVLA(B) +
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Moving (8 — 8*)TVLA(8*) + A(|8]l1 — I8*[1) to its right-hand side, we obtain

p— — G-
2

* 21/2 * * ~ * *
I8 - Bl < -2 s (8= B YIVEB) A (181 - 1B) . (C5)
0 i
For term (i) in (C.51), following the same way we obtain the lower bound of term (i) in (C.24) (in
the proof of Lemma 5.2), we can obtain the same result as in (C.31), which implies

—(B-B")"VLAB) (C.52)
< (B =B hIIVLB) oo + (B = B") s+ 1 IVLB) oo + (B = B) s 11V AB) oo

For term (ii) in (C.51), separating the support of 3 and B* into S* and S* respectively, we obtain

18711 = 118y = 185+ [l + 1Bl — (18s+[l1 + 185

Note that ﬁg—* = 0, which gives Bs = Bg — :“@ = (B — B*)g=. Hence, from (C.53) we have

181 = 1Bl = 185111 = IBs=|l1 = |(B = B")=l1 < (B = B%)s+|l1 — [|[(B—B")g=

where the inequality follows from the triangle inequality. Plugging (C.52) and (C.54) into the
right-hand side of (C.51), we obtain

A (C55)

< [[(B=8g1IIVLB ) + (B =8)s 11 IVLB ) loc + [|(B = B7) s+ 11| VQAB) [l
(i) in (C.51)

A (18 = )5l = 18 = B)se 1)+ 1_/2<_
(ii) in (C.51)

1) (C.53)

1 (C.54)

A2s*.

Rearranging the terms in (C.55), we obtain

=SB BB+ (A= VL)) (8 — B (€50
0
< (0 + VL)l + [TOABN) (8 — B)se s + - 2202
(ii) (iii)

By (4.1) in Assumption 4.1 and A > A¢gy, for term (ii) in (C.56), we have
IVL(B) oo < At /8 < A8, (©.57)

Moreover, (C.57) implies that term (i) in (C.56) is positive. For term (iii) in (C.56), since Q5(8) =
Z;-lzl gx(Bj), where g)(5;) satisfies regularity condition (d), we have

IVOAB)lloo < max |¢3(57)] < A. (C.58)

1<j<d
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Therefore, from (C.58) we obtain

< A+ IVLB) oo + VOB o) (B — B)s-1l1 + 21_/2<A25*
< A+ A8 B)s- 1+p21/2CA8
< 1T AIB - sl + (C.59)

To further provide an upper bound of the right-hand side of (C.59), we discuss two cases regarding
the relationship between ||(8 — 8%)s+||1 and As*.

o If7/(p— —(-) - As* < ||(B— B*)s+|]1, then we have

L <3208 - B)s

Plugging this into the right-hand side of (C.59), we obtain

(17/8-A+3/2-N)[[(B = B")s-

<
< 29/8 - AWsH(|(B — B%)s-|l2
< 29/8- A58 — B2

1

Dividing ||3* — B]|2 on both sides, we have

18 =Bl < 29/% AVs*. (C.60)
o If [(B—B%)s+|l1 <7/(p— —(-) - As™, then we have
17/ (8 - sl < L
Plugging this into the right-hand side of (C.59), we obtain
~l-p < ”9/ L _21_/2_ \2st — p?_of/?_vs*, (C.61)
which implies
18-l < Y2 (62
Combining (C.60) and (C.62), since max{29/4,/203/2} < 15/2, we obtain
8-l < LA
Hence we conclude the proof. O
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C.7 Proof of Lemma 5.4

Proof. Recall that the proximal-gradient update step defined in (3.8) with Q = R?, i.e., R = +oo0,
takes the form

(TeA(B;+00)) . = if [3;] < A/L,

0
_ _ = C.
j {signwj)(wj\—w it 3] > ML, (€0

for j =1,...,d, where
_ 1~
B8=8-VL\(8). (C.64)

and f3; is the j-th dimension of 8. Furthermore, if Q2 = Bs(R) of radius R € (0,0), Tz (8; R) can
be obtained by projecting 77, x(3;+00) shown in (C.63) onto Ba(R), i.e.,

TLA(B; +0) if || TL A (B; +00) 2 < R,

Tea(B;R) =< R-T1.(B; - €65
1B R) ”T“L(g(i;;l) if [|Tz,2(8; +00)l2 > R. (€09

Note that Tz, 1(8; +00) and Tr, x(8; R) have exactly the same sparsity pattern. Hence we focus on

analyzing the sparsity pattern of 77, x(8; +00) in the following.

In fact, update scheme (C.63) defines a soft-thresholding operation on 3 defined in (C.64), with
the threshold value A/L. To show H (ﬂ;A(ﬁ; +oo))§ 0 S 5, we need to prove that, for j € S*, the
number of j’s such that ‘BJ‘ > \/L is no more than 5. To achieve this goal, we first reformulate 3
as

B=B-1VENB) =B~ TVENB) + 1 (VENE) — VEA(B)) (©:66)

Then it suffices to prove there exist integers 31, 32 and 33, which satisfy 31 + 82 + 33 < 3, such that
{jeS*: |8l =1/4-A/L}| < 3, (C.67)

Hj €5 [(VLA(B)/L),| > 1/8-)\/LH < %, (C.68)

({j € 5 : |(VEA(B)/L — VLA(B)/L),| = 5/8- )\/LH < 3. (C.69)

This is because, if (C.67)—(C.69) hold, then there are at most 51 + 53 + 53 < § coordinates j € S*
such that

18i + |(VLA(B) /L) ;| + | (VEA(B)/L = VLA(BY)/L) ;| > A/L.
Since by the triangular inequality (C.66) implies
18j| < 18+ [(VLA(BY)/L) | + |(VLA(B)/L = VLA(B)/L) |,

the number of coordinates j € S* such that ‘BJ‘ > A\/L is also upper bounded by 51 + $3 + 53 < 3.
In the following, we will prove (C.68)—(C.69) and specify the corresponding s1, S2 and §s.

Proof of (C.67): Note that for j € S*, we have B = 0. Hence we have
{jeS 18l >1/4-N/L}| =|{j € S*:|8; — B;| > 1/4- A/L}|. (C.70)
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Meanwhile, note that

A _
eS8 =Bl =14 0/LY < Y 1B = 81 W(18; — B = 1/4- ML)

jES*
< D 18-85
jES*
= [[(B=B")sl1- (C.71)

Plugging (C.71) into the right-hand side of (C.70), we obtain

{5 € 8 18,1 = 1/4- M1} < 2008 - 85 (©7)

Now we provide an upper bound of ||(8 — 3%)g:||1. Following the same way we derive (C.56) in the
proof of Lemma 5.3, we can obtain

P~ 5218 B3 + (A~ VLB 18— 85l ©73)
< (A IVEE o+ [TQAB) (8 = 8)s: h + - 2/ S
According to (4.5), we have p_ — ¢(_ > 0. Hence (C.73) implies
(A= IVL8) o) (8 = Bl
< (A IVEE o+ ITABN) 18 = 81 + 2/ et (S
By (4.1) in Assumption 4.1 and A > )\tgt, we have
IVL(8") oo < Avge/8 < /8. (©.75)

Meanwhile, since Q)(3) = Z?Zl o) (B;) and gx(B;) satisfies regularity condition (d), we have

IVRAB oo = max, |\ (B7)] < A (C.76)

Plugging (C.75) and (C.76) into (C.74) and dividing A on both sides, we obtain

21/2

.

Now we discuss two cases regarding the relationship between ||(8 — 3%)s+|l1 and As*.
o If7/(p— —C) - As™ < [|(B— B%)s+ |1, then we have

B s <32 (8- 8)s

Plugging this into the right-hand side of (C.77), we obtain ||(8—8%)g=|1 < 29/7-[[(B—8%)s+|1,
which implies

18 = B l11 <29/7-1(8 = B87) 511 <29/7-Vs*[|(B — B) s+ 2<29/7- V5|8 — B 2. (C.78)

7/8-1(B =Bzl <17/8 - [[(B—B")s+|1 +

As*. (C.77)
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Plugging the upper bound of |3 — 8*||2 in Lemma 5.3 into the right-hand side of (C.78), we
obtain

15/2 435/14
52 e = 235

108 = B8)gelh < 20/7-V/s7 = —C

As™. (C.79)

o If |(B—B")s+|lh < 7/(p— — () As*, then plugging this into the right-hand side of (C.77),
we obtain

17/8 - 21/2 2
/8 7)\3*—1— / )\s*> < ) As™. (C.80)

16~ )l <877 (ST Tasr 4 2 ) < 2

Combining (C.79) and (C.80), we obtain

max{435/14,29} | . _ 435/14
gt < 290/

As*.
p— — G- -

(B —B")s

1 <

Plugging this into the right-hand side of (C.72), we obtain

4L 435/14 125L
—— / As* <
A op-—(-

Meanwhile, since we assume L < 2(p4 — (4), we have

*

{je5 181 > 1/4-M/L}| < PR

|{jeS*:(B;| =1/4-N/L}| <250- ;’*_gf.s* = 250ks",

where the last equality follows from the definition of the condition number « in (4.4). Therefore
we obtain (C.67) by setting 51 = 250ks™.
Proof of (C.68): Recall that VL (8) = L(8) + Q\(8). Hence we have

I(VLAB) sl < (VLB el + (VB 2, (C81)
By (4.1) in Assumption 4.1, we have
1(VLB)) g ]l < IVEB oo < A/8. (C.82)

Recall 9,(8) = Z;-lzl qr(B;), where gx(B;) satisfies regularity condition (c) that ¢} (0) = 0. Hence
we have

[(Vaa(B) s

= max |\ (87)| = max [¢}(0)| =0, (C.83)
€S* JES*

where the second equation follows from the fact that 87 = 0 for j € S*. Plugging (C.83) and (C.82)

into the right-hand side of (C.81), we obtain || (VE,\(,B*))§ (VE,\(,B*)/L)j| < \/8.

Hence we have

o manEST“

Hj € 5 |(VLA(B)/L),| > 1/8- )\/L}‘ —0.
Therefore, by setting so = 0, we obtain (C.68).
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Proof of (C.69): Consider an arbitrary subset S” such that
$' € {3+ |(VEA(B) = VLABY),| 2 5/8 -2} (C.84)

Let s = |S]. In the followmg we provide an upper bound of s’. Suppose v € R? is chosen such
that v; = sign{ (VL\(B) — VLy(8* ) } for j € 5, and v; =0 for j ¢ S’. Hence we have

v (VLA(B) = VLA(B)) = Y v (VLA(B) — VLA(BY),
jes’

= S|(VEA(B) — VEA(BY),|

jes’
>5/8-\s. (C.85)

Meanwhile, by Cauchy Schwarz inequality we have
oT (VLA(B) = VLA(BY)) < [[v]|2]|VLA(B) = VLABY)]], < VS| VLA(B) = VLA(B) . (C.86)

where the last inequality follows from the fact that ||v|[z < v/§||v]|s = V/s/, because v is chosen
such that ||v|lg = ¢. Combining (C.85) and (C.86), we have

5/8-As' < v' (VLA(B) — VLA(BY)) < V|| VLA(B) — VLA(BY)

)y (C.87)

Since [|Bg=llo < s and [|B%[lo = 0, we have [|(8 — 8")g=|| < 5. In the setting of logistic loss, we
further have ||B|l2 < R and ||8*||]2 < R, where R is specified in Definition 4.3. Therefore, Lemma
5.1 implies that £(03) is restricted strongly smooth. Hence we have

EA(B) < Ex(B") + (8- B)VENB) + 518 - I3 (%)

According to Nesterov (2004, Theorem 2.1.9), the strong smoothness of £, () is equivalent to the
Lipschitz continuity of its gradient, i.e.,

IVLX(8) = VLBl < (s =€) 1B = B2 (C.89)
Plugging (C.89) into the right-hand side of (C.87), we obtain
5/8-Xs' < (py — () - VB = B2 (C.90)

Plugging the upper bound of |3 — 3*||2 in Lemma 5.3 into the right-hand side of (C.90), we obtain

8 15/2
Vs < 57\ (p+ = CIB = B7ll2 < &5 - (p+ = C4)- p —/C— AVs* = 12615, (C.91)

where the last equality follows from the definition of the condition number x in (4. 4) Hence we
obtain s’ < 144k2s*. Note that S’ is defined as an arbitrary subset of {j : ‘(VL'A(ﬁ) Vﬁ,\ (B* ) ‘ >

5/8-A} and
{1 €5 :|(VEA(B) — VENB),| 2 5/8 - A} € {i: [(VEAB) — VEA(B),] 2 5/8- A}
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Hence we have
Hj € 5 |(VLA(B)/L — VEA(B)/L),| = 5/8- )\/LH < 144x25".

Therefore, by setting 53 = 144x2s*, we obtain (C.69).

In summary, we prove that (C.68)—(C.69) hold with 57 = 250ks*, 53 = 0 and 35 = 144x%s*. In
Assumption 4.4, we assume s > 144k + 250x, which implies 5 + 53 + 53 < 5. Therefore we have
H (7'L,A(,6; —i—oo))? o, < 8. Since T (8; R) has the same sparsity pattern as 77, x(83; +00), we also
have that H (TLA(B; R))S—* o < s for R € (0,+00). Hence we conclude the proof. O

C.8 Proof of Theorem 5.5

We first provide a useful lemma. It states that if 3 is e-suboptimal with respect to the regularization
parameter A and sufficiently sparse, then for X < A the objective function value ¢,/ (3) is close to
3\ (,6,\/). Here By is the exact local solution corresponding to \.

Lemma C.7. Let A > Ay and N € [Aig, A]. Suppose ||Bg:|lo < 5 and wy(8) < €. Let ,BX be the
exact local solution corresponding to A, which satisfies the exact optimality condition in (3.14) and

| (BX)§ o < 5. For logistic loss, we further assume max{||3|2, By ,} < R, where R is specified
in Definition 4.3. Under Assumption 4.1 and Assumption 4.4, we have
2 21
ox(B) — dn (By) < Ce+2(A= X)) - (N +A)s*, where C = T

< 2s. In the setting of logistic

Proof. Since ||Bg=o < 5 and || ('a)")ﬁAo < 5, we have H('B_B/\’)57
loss, we further have |||l < R and ||By

5 < R. Therefore, Lemma 5.1 gives

Ly (Bx) > Lx(B)+ (B —ﬁ)TVZN (B)+ P ;C_ HB,\' —,BHE > L(B8)+(By —B)TVZ,\' (8),(C.92)

where the second inequality is because p_ — (— > 0, which follows from (4.5).
Let &€ € J||8B]|1 be the subgradient that attains the minimum in

wx(B) = min max {('B_WH(VE)\(,@) + )\5')} , (C.93)
geollh en 1B —B'lh
where Q = By(R) in the setting of logistic loss and Q = R? in other settings. Since £ is a minimizer,
we have
B-8)" o7 }
w =max{ ——— (VL + A . C.94
8 = max { 5= 5 (VE0) + 39 (.94
By the convexity of £; norm, we also have
X||Bwll, = NIl + N€ET (By — B). (C.95)

Recall that the objective function ¢y (3) is defined as ¢ (8) = L£(8) + A|B]1. Adding (C.92) and
(C.95), we obtain

(3% (BA’) > on(B) + (VLN (B) + XE)T(BX - B).
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Hence we have
ox(8) — dx (By) < (VLx(B) +X€)" (B By)
= ((VE(B) + V2 (B)+38) + (VO(8) ~ YQA(B)) + (N& ~28)) (8 By)
VLy(B)
< (VLA(B) + AE)T(Q —By) + [Vox(B)— Va8 18- By
(i) i (i) (iv)
+|NE — Al 18— B -
(i) ()

. (C96)

Now we provide upper bounds of terms (i)—(iv) correspondingly.
Bounding Term (i) in (C.96): According to (C.94), we have

I /
(B=83)_ (g7,8)+ ) Smax{(ﬁ—ﬁ)T

18 - By pea LlIB - B'lh

where the last inequality is our assumption. Therefore we obtain

(VLA(B) +26)T (B - By) <e-||B - Bw

(VEA(B) +36) | = n(®) <«

1

. (C.97)

We will provide an upper bound of H B — B,\/
Bounding Term (ii) in (C.96): Recall that Q,(8) = Z?Zl ar(B;). We have

[Vox(B8) — Vo8|, = 1%1?%(0[‘%/(53') - (B))] < mex, N = Al =Xx=X, (C.98)

, When we handle term (iv).

where the inequality follows from regularity condition (e), and the last equality is because A > \.

Bounding Term (iii) in (C.96): Since & € 9||8||1, we have [|€|lcc < 1. Then we obtain
INE = Mlloo = [N = All[€]loc < [A = X[ =X =X (C.99)

Bounding Term (iv) in (C.96): Note that

18— By, < 18— 871+ By — B, (C.100)
— ——

(iv).a (iv).b

For term (iv).a, since 3 satisfies ||Bg= (0 < 5, wa(B) < A/2, and ||B]]2 < R for logistic loss, we have
that 3 satisfies the assumptions of Lemma 5.2. Following the same way we obtain (C.47) in the
proof of Lemma 5.2, we can get

(A2 =A/8)I(B = B )g=lli < BA/2+A/8+ N)[[(B = BY)s-
which implies (8 — 8%)s=

1B=8"1 < 18-85 1+1(B=8")s:Il1 < 8I(B-B")s-[1 < 8Vs*[|(B=B")s+]l2 < 8Vs*[|B—5"|2.

1

1 < 7[(B — B*)s+||1. Hence we obtain
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Plugging in the upper bound of |3 — 8*||2 in Lemma 5.2, we obtain

21
p— — G-

18 =B < As*. (C.101)

o < sand Hé,\/ 5 < R for
logistic loss. Moreover, since ,@X is an exact local solution, it satisfies the exact optimality condition
w(,(/i\x) < 0, which implies w(,(/i\x) < N /2. Hence 3,\/ also satisfies the conditions of Lemma 5.2.
Similar to (C.101), we have

Meanwhile, for term (iv).b, note that we assume By satisfies H (BX)@

~ 21
By — 8%, < Ns*. C.102
I8y -], < 2 (c.102)
Plugging (C.102) and (C.101) into (C.100), for term (iv) in (C.96), we obtain
a2 21 / *
188y, < P (N 4+ X\)s™. (C.103)

Plugging (C.97)—(C.99) and (C.103) into the right-hand side of (C.96), we obtain

O (B) — dn (,@,\')

! * _ / _ / . 21 / S*
< e-p__g_()\ + A)s* +( ()\ 2)9 - (/\ 2)96) p__c_(vA + )
(i) in (C.96) (i) in (C.96) (i) in (C.96) ;5% ™ ¢ 06)
21 ! . ! S*
< p__c_(e+2(>\—>\)) (A +X\)s*,

where the upper bound of term (i) in (C.96) is obtained by plugging (C.103) into the right-hand
side of (C.97). Hence we conclude the proof. O

Now we are ready to prove Theorem 5.5.

Proof. Sparsity of {ﬁt(k) },:io within the ¢t-th Stage: In the following, we provide results con-

cerning the sparsity of the sequence { ,ng) }2020 within the ¢-th path following stage. In the following
we prove this by induction. Note that the initialization satisfies

18 5

By Lemma 5.2 we have

(<5 wn(B) < a2 and LY <2(py — ). (C.104)

21/2
p—— G-

o, (B — ¢, (8%) < AZs*, (C.105)

Suppose that, at the (k — 1)-th iteration of the proximal-gradient method (Lines 5—9 of Algorithm
3), we have

18 ) s AZs*,(C.106)

0S5 LY <2(ps — ¢4), and oy, (B1) — 65, (8%) < p_21—/2C_
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Then according to Lemma 5.4, we have that B§k) =Tw )\t( §k‘1); R) satisfies

1) sl

Note that, in the setting of logistic loss, we always have H ,Bt

of the ¢, constraint Q = By(R). Since || (Bt(k_l))k@
(k))
¢

<3 (C.107)

H2< R for £k = 0,1,... because
o < & and H(:Bt )§ o < s imply H(,@Ek_l)

5.1 we have

L), (Bﬁk)) > 25, (B57) + VE, (B )T (8% — D) + L2526 — gD, (C.108)
Lr (B0 < By, (8% D) + VL, (B% D)7 (8% — g+ 4 2 C+H5tk) ﬁtk D2 (C.109)

Now we prove that (C.109) guarantees the line-search method in Algorithm 2 produces Lgk) <

2(p+ — ¢4+). We prove by contradiction. We assume that, when the line-search method stops, it
outputs Lgk) > 2(p+ — (4). Recall that we double Lgk) at each line-search iteration (Line 6 of
Algorithm 2). Then at the line-search iteration right before the line-search method stops, we have

Lgk)/ = Lgk)/2 > (p4 — C+). Remind that the objective function ¢x(8) = £(8) + A||B]|:. Adding
)\tHﬁgk) Hl to the both sides of (C.109), we obtain

ox (B) = Ln(8") + 87,
< D (B0) + VB () (0 - ) 4 L1 - BV 4 a8

(k)

~ - — L _

< L (8 - 1))+v£>\t(5§k 1))T<:3t(k)*:3t(k 1))+ tQ Hﬁﬁk)fﬁfk 1)H;+>\tH16t(k)Hl
- ngk)ly)\t (ﬁgk);'ggk_l)%

where the last equality follows from (3.7). The stopping criterion of Algorithm 2 (Line 7) im-
/

plies that the line-search method should have already stopped and output Lgk) = Lgk) /2, which

contradicts our assumption that the line-search method outputs Lgk). Therefore we have

LY <2(p — ¢). (C.110)

Moreover, according to (C.108) and (C.109), Lemma C.1 holds, i.e.,

(k)
— L _
o (87) < o (B Y) = 2|87 - BV

2?

(C.111)
which implies

21/2

A2s*. (C.112
pi Cf t ( )

dr (B) = 62, (8%) < o, (B —Hﬁt BV - o0, (8Y) <

According to (C.107) and (C.110)—(C.112), now we have

1(6%) 5 22

p— — G-

0 <5 LY <2(pr —¢y), and ¢y, (BY) — o, (87) < Ais®. (C.113)
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Combining (C.104), (C.106) and (C.113), by induction we prove that (C.113) holds for all £ =
0,1,... within the ¢-th path following stage. Furthermore, by Lemma 5.3 we know that all ,ng)
have nice statistical recovery properties, i.e.,

15/2
ngék)_I@*HQS /C MVs*, for k=0,1,....
Convergence to a Unique Local Solution: In the following, we prove that, within the ¢-th path

following stage, the limit point of the sequence {B,gk)}ZiO generated by Algorithm 3 is a unique

< 3§, according to the restricted strong convexity of ZA(,B) in

O§§, for k=1,2,....

exact local solution. Since || (,8,50))
Lemma 5.1, the sub-level set

{B:008) <0 (8). (8 - 8)5
is bounded. From (C.111) and (C.113) we have
o3 (8") < 6, (8") and || (8])5:

Thus {B{"}°°  is bounded, which implies {¢x, (8"))}7°, is also bounded. Meanwhile, (C.111)
implies that {qﬁ,\t (ﬁgk))}zozo decreases monotonically. By the Bolzano-Weierstrass theorem, the

S*

limit point of {(;5)\t (B,gk)) }zo:o is unique, which implies
tim {o,(81) = o, (81 ) } =0.
Consequently, by (C.111) we have that, for any limit point of {,B(k)}zozo,
Jm {1 =BV, } < g gim {on, (87) —on (8D} =0
Moreover, Lemma C.2 implies
tim {wn, (87) } < (£ + (o = o)) - tim {||8 = 8"V, } = 0

In other words, {ﬂt(k)}:i() has a convergent subsequence such that limk%oo{w& (ng))} < 0. Fur-
thermore, it implies that such a convergent subsequence of {,@t(k)}zozo converges towards an ex-
act local solution 3, that satisfies the exact optimal condition in (3.14). By (C.113) we have
H (ﬁgk))k?* 0 <5 (k=1,2,...), which implies H (BM)§ 0 S s

Now we prove the uniqueness of this exact local solution by contradiction. Let & € 8H B\At Hl be

the subgradient that attains the minimum in

@)= min g f B (2, 3,) 4 06) ) 14
gred|Br, I BE | |8, — B/,
Since wy, (B\)\t) < 0, we have
(B\)\t - 16/)T 5 =
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We assume there exists another local solution ,@S\t, which is the limit point of another convergent
(,@S\t - Bkt)s—* < 25. In the setting of

subsequence of {Bt }k o- Since H ,8/\t

logistic loss, we have HBA H2 < R and HBAt H2 < R by the £y constraint. Hence Lemma 5.1 implies
E)\t (/é\i\t) > E)\t (3&) + (B\S\t - /é\)\t)TVE)\t (B)\t) + %Hﬁg\t - B)\t”% (0116)

Meanwhile, the convexity of £1 norm implies
|5l = Ml[Ba ], + Ae(Bh, — Br) €. (C.117)

Recall that the objective function ¢ (8) = £(8)+ A||8||1. Adding (C.116) and (C.117), we obtain
. . ~ T . - . .
02 (B3) — o (Br) = (VEn(Br) + M6) (B, — Bn) + == B3, ~ By (c.1s)
(i)

Since (C.115) implies

By, - By,)" { Br—-8) f s
et (VL (Br) + M) < max ¢ <=0 (VE, (By) + M) ¢ <0,
Hmt—ﬂ%\h( €)<p 1B, —ﬂ'm( <)

term (i) in (C.118) is nonnegative. Hence we obtain

o (Bh,) — dx (Br) = 5 L= Bl (C.119)

Because we already know that the limit point of {(;5 A (,ng)) }2020 is unique, which implies ¢y, (B,At) —
O, (BAt) = 0. Then we obtain H,@f\t — BAt H; = 0, which contradicts our assumption that B\S\t =+ BAt-
In other words, we prove that the sequence { ﬁt(k) },:io converges to a unique local solution B)\z.

Geometric Rate of Convergence of Algorithm 3: Now we establish the geometric rate of
convergence of Algorithm 3. According to the stopping criterion of Algorithm 2, we have

ox (8") < vy, (81581 Y)

A _
_mﬁm{ckt( F) Ve (8 (8- 8 Y) + 2B - B 1’H§+At||ﬁ|1}
< D{@xﬂﬁ’“—lbwﬁx B0 (- 1) + 2 g - - U1 + Ml
o (i)

(C.120)

For term (i), sincekH (lﬁtl%l )S* <sand 3= aﬁ,\t +(1- a)ﬁfﬁl with a € [0, 1],
we have H B — :Bt )) Hﬂt H2 < R and HﬂAtH2 < R, we have
18]z < R, since the £y ball Bg (R) is a convex set. Applymg Lemma 5.1, we have

('BAt)S*

En(607) + VL (B (8- 8 + == a - B
Ly (B )+ VL, (B ) (8- 8%Y), (C.121)

ZM (/6)

Vv

v
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where the second inequality follows from (4.5). Plugging (C.121) into (C.120), we obtain

(k)
k . ~ L k— 2
ox (B") < o B {ﬁxt(ﬁ) + = 18 - B, 1)H2‘|‘)\t”5|1}. (C.122)
=P —Q)Py
a€gl0,1]

Since H(,Bt(k_l))§ 0 (B\)\t)s (,BM (k 2 ) Ho < 25, Lemma 5.1 implies
that the strong convexity of Ly, (8) holds for ,BAt and ,Bt b, Hence we have

L5, (8) = L, (aBy, + (1 — )8 V) < aLly, (By,) + (1 —a)Ly, (B%Y). (C.123)
Meanwhile, by the convexity of /1 norm we have

MBI = MaBs, + (1 - )* V|, < ar By, + (1 - @BV, (C12)
Plugging (C.123) and (C.124) into the right-hand side of (C.122), we obtain

on (B < i o (L0 (Br) + M8 ll) + (1 = ) (B (6070) + M8, )

(k)

+;Ha@ﬁ(l—a)/@t(k_l)—@(k_l)HQ}
Zg%nu{a@t(ﬁxt) (1-a)én, (B1) Ham 1—a>ﬂ£’“>—ﬁ£’“”!\§}

< min {mt( ) —a (00 (817Y) = en(Bn)) + 2 ||6<’“ YB3 } (C.125)
(i)

For term (i), similar to (C.119), applying the exact optimality condition of BAt and the restricted
strong convexity of £y,(3), we obtain

SV =Bl

Plugging this into the right-hand side of (C.125), we obtain

O, (ﬂt(k_l)) — Oz, (BAt) > P

ox(81) < arél[iofll]{dut( . 1))—a(qﬁxt(/@ﬁk_”)—@t(@t)) (C.126)
CYZL(k) 2 (k—1) ~
Hg 2 (o (B) - an () |

The right-hand side of (C.126) attains the minimum when o = (p_ — (_)/(2L§k)). Plugging this
value of «, we obtain

¢)\t( gk)) < ¢)\t (/ngk_l)) - p:lL_(kg_ <¢At( gk_l)) - ¢)\t (B\)\t)>>

t
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which implies

O, (Bfk)) — Py, (B\At) < (qu (@Skil)) — O, (BM)) - p4L = (Qb,\t( (b=D) ) AW (BAJ)
t

- (l_p4 ) (085 = o0, (Bn) (C.127)

Recall that in (C.113) we have Lgk) <2(p+—C4+) (k=0,1,...). Plugging in this into the right-hand
side of (C.127), we obtain

P, (ﬁt(k)) — o0 (Br) < <1 - % Z_ — g_ > (¢>\t( gkil)) — P, (3&))
+— (4

1/k

= (1) (o) - on(Bu)

= (1 — 81H>k (m (5§0)) — O, (BAJ) (C.128)

Here £ is the condition number defined in (4.4). Now we are ready to characterize the total number

of proximal-gradient steps required to obtain an approximate solution Bt = gkﬂ) that satisfies
Wy (Br) SN/4 (t=1,...,N—1), or wy(B) <eops (t=N). (C.129)

From Lemma C.2, we have

w}\t( §k+1)> < (L(k+1)+ )HIB(IH-I §'“)\\2:L,§’“+1) <1+l’£k+€+> HIB(kH k)HQ.(C.I?,O)

(k+1)

Note that the stopping criterion of the line-search method (Line 7 of Algorithm 2) 1mphes L;
—(_. Otherwise, we assume that LEkH) < p——(_. Since ||( (kH)) o < sand I ( ﬁt

imply (8% — Y

0SS

*

o < 25, by Lemma 5.1 we have
k+1 k
¢L§k+1)7)\t( t( )’BLE ))

I,(k+1)
= D)+ VEN (B () - )+ B ol - g )

(
< Ln(BP) + V(B (B0 — B) + L= |8 — 2+ 0
< L (8" + B

_ ¢>\t(ﬁgk+1))

where the first equality follows from the definition in (3.7), the first inequality is because we assume
k+1)
Ly

< p— —(_, the second inequality follows from the restricted strong convexity by Lemma 5.1.
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However, this contradicts the stopping criterion ¢y, (BtkH ) < wL(k+1) A ( (k+1), gk)) Therefore
we have proved L(kﬂ) > p_ — (_. From (C.130) we have
E+1 k+1 E+1) k E+1 k+1 k
w. (8] +))§L§+)(1+p )Hﬁ(+ B, = LFV A 4 0) |85 — 8H)|,.(C.131)
Moreover, by Lemma C.1 we have
L(’“

(k+1) 2 k k+1
I )~ 4O < on (89 - en (8.
Plugging this into the rlght—hand side of (C.131), we obtain

wy, (BFTY) < (14 m) LYY — g9

< (4R 20 (0, (8) — o, (851)).

According to (C.111), the sequence {¢>\t (ﬁgk))}zozo decreases monotonically. Therefore, we have
Ox, (ﬁgkﬂ)) > Py, (B)\t), which implies

wr (B < (1 + ﬁ)\/ oL (@t (B") — o, (B)\t))- (C.132)

Now we provide an upper bound of the right-hand side of (C.132). Recall that in (C.113) we
have Lgk) < 2(py+ —¢4) (K =0,1,...), and in (C.128) we have ¢y, (,Blgk)) — o (Br) < (1 -
1/(8%))k<¢,\t( §0)> — b, (B}J) Note that we assume “(,8150))? < 5 and wy, ( (0)) < A/2. In
Lemma C.7, we set X' = XA = A\ and € = \;/2, then we have
21 2 *
s

C_

Plugging these into the right-hand side of (C.132), we obtain

k k
wor (BFY) < (14 n)\/4(p+ e <1 _ 1) 2L e = (14 ﬁ)\/84/£ (1 _ 81) AV

8k /) p-—(- K

Therefore, for t = 1,..., N — 1, to ensure that ,B(H satisfies wy, (,Bt(kﬂ)) < A\t/4, it suffices to
make k satisfy

O, (/3,5(0)) AW (th) <

1 k
(1+/€)\/84/-@ (1_&;) Vst < A\ /4,
which implies

k2210g(8\/ﬁ-\/é(1+m)-\/37)/1og (1—81).

K

Similarly, for ¢t = N, to ensure that ,B,gkﬂ) satisfies wy, (,6("“'“)) < €opt, k should satisfy

k> 2log(2v21 - V(1 + k) - @At/eopt)/log (1 - ;ﬁ)

Therefore we conclude the proof of Theorem 5.5. O
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C.9 Proof of Theorem 4.5

Before we lay out the proof, we present a useful lemma. It ensures that the approximate solution
B¢—1, which is obtained from the (¢ — 1)-th path following stage, is (\;/2)-suboptimal with respect
to regularization parameter A\, i.e., wy, (,3t—1) < A\i/2.

Lemma C.8. Let 3;_; (t =1,...,N) be the approximate solution obtained from the (¢ —1)-th
path following stage (Line 8 of Algorithm 1). If wy, , (ﬁt—1) < M\—1/4. Under Assumption 4.1 and
Assumption 4.4, we have

W, (,Et—l) < Ai/2,
where \y = n)\;—1 with n € [0.9,1).

Proof. Consider regularization parameter A\;_1. Let £ € 0 Hﬁt,lHl be the subgradient that attains
the minimum in

~ . . (Bt—l - IB/)T ~ Y /
WX, (ﬁt—l) = E’ec‘?rl%?_llll g}gé {Hatl - ,6/H1 <V/J>\t_1 (/Bt—l) + A—1€ ) ) (C.133)

which implies

- B1-8) .
Wiy (Bi1) = max {M (v£>\t—1 (Bi—1) + )\t—lE) } : (C.134)

Now we consider regularization parameter \;. We have

Wi, (Bt—l) = min max {M (VZM (Bt—l) + )\t5/> }
g€llBe—1l A€ | ||Bi—1 — B,
Br—8)" (o7
g}g«é {H,&f—l—,@/Hl (V»CM (,Bt—l) + )\tﬁ) ) (C.135)

where £ is defined as the minimizer of (C.133). Recall that VE,\t (,gt_1) =VL (Bt—l) +VQ,, (Et_l).
We have

VL (Bio1) + M€ = (Vﬁ(ﬁtfl) +VO, ., (Bi—1) + At&) + (A—1€ — M)
—i—(VQ,\,5 (Bt—l) -Vay_, (Bt—l))-

Plugging this into the right-hand side of (C.135), we obtain

~ AT B 3 anT
W, (51&—1) < max {('BH_B) (VEAt,l (Bi=1) + )\t—15> } +max {(Btl'g) (M—1& — /\t'f)}

1Bi-1 - 8], g | [|Be-r - ],
(i) (ii)
(B - 8)" ~ ~
+,161}2§2<{M<VQ& (/Btfl) - VQAt_1(Bt1))} . (C.136)
(i)
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According to (C.134), term (i) in (C.136) is equal to wy,_, (Bt,l), which is upper bounded by A;_1 /4
by our assumption. For term (ii) in (C.136), we have

(Bes — 8" } {(Bt—l—ﬂ'f }
X B — )\_ —)\ < X —_— )\_ —)\
(e A S (e
- H)\t_lg_)\téuoo
< A1 — Ay

where first inequality is due to the duality between ¢; and fo norm, while the second inequality
is due to the fact that \¢—1 > \; and ||€]|cc < 1, which follows from & € OHBt,lHl. Similarly, for
term (iii) we have

(Bt—l - 5/)T 3 3 3 3
B2 {uﬁu—myl(mt Bt) =V Ben)) [ < IV (Bret) = V2 (B
= max ‘q&t((gtfl)j) -\, ((EH)J‘)‘
< Aic1— A,

where the second inequality follows from regularity condition (e). Hence, from (C.136) we obtain

W)\t(,gt—l) < M/d 4+ M=M= A < (/MEn)+1/n—141/n—1)A < N /2,
S~—— — N——
(i) in (C.136) (ii) in (C.136) (iii) in(C.136)
where the last inequality is obtained by plugging in n € [0.9,1). Hence we conclude the proof. [

Now we are ready to prove Theorem 4.5.

Proof. Geometric Rate of Convergence within Each Stage: The stopping criterion of Algo-
rithm 3 (Line 9) implies

war (Bio1) < \a/4, for t=1,...,N.
By Lemma C.8 we have
wa (Bio1) < \J2, for t=1,...,N. (C.137)

Recall that we initialize the t-th stage with Et_l =03 and L; | = Lgo) (Line 8 of Algorithm 1).
o <sand L1y < 2(p+ — (4+), we have

By Theorem 5.5, as long as H (Bt,1)§

1(8") s

which implies H (Et) gl S sand Ly < 2(py —C(+). Recall that we initialize the entire path following
procedure with By = 0 and Ly = Lyin < 2(p+ — (4+) (Line 4 of Algorithm 1). By induction we

Ogga Li(fk)§2(p+_c+)7 for k:]-aza"'a

obtain

H(Bt)ST* 0§g7 Lt§2(p+_<+)a for t:177N
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By setting A = A, and 3 = 3 (t=1,...,N) in Theorem 5.5, we obtain that, within the ¢-th stage

(t=1,...,N —1), the total number of proximal-gradient iterations is no more than
1
2log(8v21 - 1 -vVs*) /1 —_— |,
ox($VAT V(1) f1o (75 )

while within the N-th stage, the total number of proximal-gradient steps is no more that

210g(2\/ﬁ \/E(l + '%) : @Atgt/eopt)/lOg (111> .
—1/(8k)
Hence we obtain the first conclusion.
Geometric Rate of Convergence over the Full Path: Now we prove the second statement
about the total number of proximal-gradient steps along the entire solution path. The total number
of path following stages is

N =log(Aigt/Ao)/logn.

Together with the first result, we have that the total number of proximal-gradient steps is no more
than

(N —1)C"log(4CV's*) + C"1og(C'V/s* Mgt /€opt) -

where

C =2v21- k(1 + k), C':2/log<1_11/(8/€)>.

Geometric Rate of Convergence of the Objective Function Values: Now we prove the
third statement concerning the objective function value. For ¢ =1,...,N —1, by (C.137) we have
WAps1 (Bt) < Aeg1/2. Setting N = Mgty A = Ait1, B = B¢ and € = M\y41/2 in Lemma C.7, we obtain

2 = 21 .
Phise (Bt) ~ i (B/\tgt) < ﬁ(AtH/Q +2(Agy1 — )\tgt)) (Mgt + Aig1)s™
Since Atgt < A¢y1, we have
3 3 21 . 105-22 5"
¢>\tgt (Bt) - ¢)\tgt (Bktgt) < ﬁ(}\t+1/2 + 2)\t+1) 22X 18" = ﬁ

Since A\j11 = 't \g, we obtain

105 - A2s*

, fort=1,...,N—1.
p—— G-

d)/\tgt (Et) *qf)/\tgt(é}\tgt) < 772(t+1)

Similarly, for t = N, we have wy,,, (BN) < €opt- By setting A = N = Mgt and € = €op in Lemma
C.7, we have
< 21 - )\tgts*

d)/\tgt (Et) - ¢>\th (B\)\tgt) >~ ﬁfopt.

Therefore we conclude the proof of Theorem 4.5. O
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C.10 Proof of Theorem 4.7

Proof. Recall that ,@ is the approximate local solution obtained from the ¢-th path following stage
(Lines 8 and 12 of Algorithm 1). Hence it satisfies the stopping criterion of the proximal-gradient
method (Line 9 of Algorithm 3), i.e., for t =1,..., N —1 we have wy, (Bt) < M/4 < )\t/2 while for
t = N we have wy, (Bt) < €opt K )\tgt /4 <N\ / 2. Meanwhile, by (5.2) in Theorem 5.5, 5t satisfies
1(8e) =l

Lemma 5 2 gives

< 5. For logistic loss, we further have || Bill2 < R due to the £, constraint. Therefore

Hat—ﬂ*H2§ 21/8 \eVs*, for t=1,...,N,

which concludes the proof. O

C.11 Proof of Theorem 4.8

Proof. We denote the subgradients by £* € 9||3*||1 and € € 8H,§>\t
the subgradient that attains the minimum in

~ AT ~
Wy, (B,\t) = min max{M< ENA(B,\t) + )\5/) } .

el Bl A€ | ||, — B

Hl. In particular, we set gto be

Recall that BAt satisfies the exact optimality condition that wy, (BAt) < 0, hence we have
Beo { (Bx — 8" (VZAt (B) + )\té\) } < 0. (C.138)

By Theorem 5.5 we have H (BN)? 0 S 5. Since H (B\)\t — B* )S* <3, according to Lemma 5.1 the

restricted convexity holds for [,N,\t (B) at B and B*, i.e.,

Z)\t (B)\t) > Z)\t(IB*) + vz)\t (/6*)T(B\)\t - /8*) + P
Z)\t(lg*) > Z)\t (B\/\t) + VE)\)& (B\At)T(IB* - B)\t> + P

S - (Casy)

A (R ¥T)

Meanwhile, by the convexity of ¢ norm, we have

MIByll, = MBI+ M (B, — B8 (C.141)
MBI = )‘tHB/\tH1 + Xe(B* — B,\t)TEA. (C.142)

V

Recall that £5(8) = £(8) + Qx(8). Adding (C.139)—(C.142), we obtain

T ~ —~ A ~
0 > (VLB + V(B +ME) (Br —B) + (VL0 (Br) + ME) (8B
(i) (ii)
+(p— — C)||Br — B*I3. (C.143)
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According to (C.138) we have
(VE)\t (ﬁAt) + )\t§>T(E)\t _ B ) < max{(ﬁ/\t B,)T<VE)\t (ﬁAt) + )\g)} <0

which implies that term (ii) in (C.143) is nonnegative. Moving term (i) in (C.143) to its left-hand
side, we obtain

—)|Br -85 < (vcw*)+vgxt<ﬁ*>+xts*)T(m—,8*)

IN

6*6%1”1;31*”1 { Z’ (VL(B*) + VO (B%) + /\tE*)j‘ ) ‘(,B* _ B&)j‘ }.(0.144)

In the following, we decompose the summation in (C.144) into three parts: j € S*, j € S} and
j €855, where S} = {j : |p;| > v} and S5 = {j : |Bj] < v+}. Here 14 > 0 is defined in (4.16).

e For j € S*, according to regularity condition (c), we have
(VQAt(/@*))] = qs\t(ﬂ;‘) = qg\t(o) =0, for VES S*.

By (4.1) in Assumption 4.1, we have

N < = G < < )
max (VL(BY),| < ggfgd)(w ] IVLB ) oo < Aegt/8 < Ae/8 < N
Hence we have
max | (V£(8") + Qx (8) ;| < A
jes*

Meanwhile, since £&* € 9|3" (|1, we have A&} € [—As, At]. Therefore, for any j € S*, we can
always find a £ such that

)

‘(Vﬁ(ﬁ*) +VQ\(8Y), + M| =0

which implies

g*e%ﬁilﬁ*ul{\(W(ﬁ*)wQM(ﬁ*)+At£*)j]} =0, for je &5~

Thus we obtain

5*6%1”12*”1 { Z ‘ (VL(B") + VO, (8% + )\tﬁ*)j‘ : ‘(,3* - E,\t)j‘ } =0. (C.145)

e For j € ST C 5%, we have 37| > 1. Recall that Py\(8) = Qx(8) + Al|B[[1. By our assumption
on Py, (B) in (4.16), we have

(VOA(B7) + N€), = 1), (B}) =0, for je€ S,
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which implies

min { > |(vL8) + v (B8 + ng) || (B - th)j\}

g-edllen |3,
= > |(ve@)),|- |8 =B,
jess

< (VLB g lly - 187 = Bacly- (C.146)

e For j € S C .5, we have 3] <1y By (4.1) in Assumption 4.1, we have

max
jeSE

(VL(B);] < max |[(V£(8Y),| = IVL(B") | < Ae/8 < /8.

il ~ 1<5<d

Meanwhile we have

max
jES]

(VQy, (,C‘}*))j = max

nax |qy, (67)| < max 45, (5))] < A
JESS

~ 1<j<d

where the last inequality follows from regularity condition (d). Also, since £&* € 9|8*||1, we
have |£7| < 1. Therefore we obtain that, for j € S3,

‘(Vﬁ(ﬁ*) + VA (87) + )\tf*)j‘ < max

2

(V@) |+ prces

(VQ/\t(B*))J’ + A < 3.
which implies

min { 3 ‘(Vﬁ(g*) +VQ,,(8) + Atg*)j‘ : ‘(ﬂ* _ th)j] } <3\ ) ‘(ﬂ* _ Ext)j(

grealisih \ fog jess
= 3)‘fH(IB* - B\/\t)sfg 1 < 3/\“/37*‘}(5* - BM)?; 9 = 3)‘t\/%”f6* - B\)‘tHQ' (C.147)
Plugging (C.145)—(C.147) into the right-hand side of (C.144), we obtain
2 * 1 * *
1By~ 81 = o (12BN +3053).
which concludes the proof of Theorem 4.8. 0

C.12 Proof of Lemma 4.9 and Theorem 4.10

First we prove Lemma 4.9, which states that the oracle estimator BO is uniquely defined and has
some nice statistical recovery property.

Proof. To prove that the global minimizer of (4.19) is unique even for nonconvex loss functions, in
the following we show that £(3) is actually strongly convex on the sparse set {3 : supp (3) C S*}.
Assume that 3 and @' satisfy supp(8) C S* and supp(@’) C S*. By Taylor’s theorem and the
mean value theorem, we have

L(3) = L(B) + VLB (8~ B) + 38 ~ BTVLGS + (1 -)B) B - B),  (C145)
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where v € [0, 1]. Note that we have ||3' — Bl|p = s* < s* +25. By Definition 4.2 and Definition 4.3,

we have (5’ ,[3) & 5)
V2L 1- V2L, 5t 42
—pl C0PT =) gy, = o (VLT 25,
Plugging this into the right-hand side of (C.148), we obtain
L(B) > L(B) +VLB) (B - B)+ 18 - BI3, (C.149)

where p_ = p_ (VZE, s* +2§) is a positive constant according to Assumption 4.4. Note that (C.149)
holds for any B and 3’ such that supp(8) C S* and supp(8’) C S*. Therefore, £(3) is strongly
convex on this sparse set, which implies the minimizer of (4.19) is unique.

Now we prove the statistical recovery property of the oracle estimator Bo in the setting where
L(B) is least squares loss. Let ,@’O, B* € R*" be the restrictions of Bo, B* € R? to S* respectively,
and Xg« € R™*" be a new matrix containing the columns of X, i.e., X, that satisfy j € S*. Since
,@6 is the solution to the ordinary least squares problem

Bly = argmin X3~ I3
ﬂIGRS

it has the closed-form expression of
By = (X% Xg) ' XLy

Here we still need to prove that XL, Xg- € R® %" is invertible. Note that the smallest eigenvalue
of XE*XS* is defined as

Amin (X5 X g-) = inf {'UTXT*XS*’U ola=1, ve RS*},
which satisfies

Amin(Xg*Xs*) = { XX : |’U||2 =1, ve Rd7 SuPp(v) = S*}

v

inf ST XTXw : ||v]a =1, veRY, |Jvfo < s }

f—"\r—"\

> inf {oTX Xv : |v]la =1, v € R, o]l < s* +25}

= np_(V?L,s* +23) (C.150)
> 0.

Here the first and second inequality are due to {v : supp(v) = S*} C{v : ||v|lo < s*} C{v: ||v]jo <
s*+25}, while the second equality follows from Definition 4.2, because in the setting of least squares
loss V2£(B) = XTX/n, and the last inequality follows from Assumption 4.4. Therefore the smallest
eigenvalue of Xg* X g+ is positive, which implies that XE*XS* is invertible.

By our assumption on (Y |X = x;), we have y = X3* + € = Xg:3* + €, where € € R" is a zero
mean sub-Gaussian random vector with independent entries and variance proxy o2. Therefore, we
have

By — B = (XLXg) XLy — 87 = (X5 Xg) ' XE (X8 +€) - B = (XL Xg) XL e.
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Now we provide an upper bound of Hﬁb — ﬂ*'HOO. Note that the j-th entry of (Xg*XS*)_lXE*e €
R*" can be denoted as e;(X%. Xg+) XL, e. Here e; € R¥ denotes a vector that is all-zero expect
an “1” in its j-th coordinate. For any j, e;(X%.Xg+)"'XZ.€ is a sub-Gaussian random variable

2 2)>’

2
202. Therefore we have

with variance proxy ||e;(X%5. Xg) "1 XF.

P(|e;(X§. Xg+) ' X§-€

> t) < 2exp( 752/(HeJ XT*XS*) XTI,

which implies

(XL X)X €| > (XL X )T IXL,

P < max
je{lv"'vs*}

> < 2s5™ exp <—t2/( max
jE{l,...,s*}

-v/2log s* with C' > 0, we have that

;;2)) .

|ej (XL Xg+) T XL || o

Taking ¢ = C'maxjcqy, . o}

186 = 8|l = [l(X5-Xs) "' XE.e|, = jelboos) (X5 X)X e
S C ) {I{l&X } ej(XT*XS*)_le* 20- . \/m (0151)
J€l,...,s*

holds with probability at least 1 — 2exp(—C?)/s*. In other words, there exists a constant C' > 0
sufficiently large such that (C.151) holds with high probability. Note that, for any j € {1,...,d}

Hej(Xg*Xs*)—le* ; = ej(Xg*XS*)_ng*XS* (XE*XS*)_leT

5= ej(X:‘g*XS*)_leT

J
< Ao (X5-Xg) ™)
= 1/Apin (X5 Xg+)
< 1/(np-),

where the last inequality follows from (C.150). Plugging this into (C.151), we obtain

1B~ 87|, < Cov/aTp | EX

Recall that Bb and B*' are the restrictions of ,@O and B* to S*, and supp (,@o) C §*. Therefore we
obtain

~ . log s*
1Bo — || < Cov/2/p
which concludes the proof. O
Now we prove Theorem 4.10.

Proof. Let E € 8” BAt We set é’\ to be the subgradient that attains the minimum in

Iy

R T
wr, (By,) = min max{w(v@(ﬁAt)JrAg’)}.

eeoln i A< | |8y, — B,

Since BAt satisfies the exact optimality condition that wy, (,/B\At) < 0, we have

max { (Bx, —B)" (VL (Bx) + M) | <. (C.152)

BeN
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Now we prove there exists some £g € 8H ﬁoH1 such that BO satisfies the exact optimality condition
maX{ (Bo — /@I)T<VZAt (Bo) + Atéo)} <0. (C.153)
Recall that £5(8) = £(8) + Qx(8). In (C.153), we have
(Bo —B)" (VL (Bo) + \iéo)
= (Bo - ﬁ’)T<VE(/§o) +VQ,, (Bo) + AtEO)
= Y (Bo-8), (VQM (Bo) + Atfo)j +(Bo—B)"VL(Bo) . (C.154)

1<4<d
== (i)

(i)
For term (i) in (C.154), we decompose the summation into two parts: j € S* and j € S*.

e For j € S*, since (Bo)j = 0, by regularity condition (c) we have

(Var (Bo)) =o0.

J

Note that &o € GHBO By setting (£€0); = 0 for j € S*, we obtain

Iy

> (Bo — B),(VQx(Bo) + Néo) =0

jes*

e For j € S*, by assumption we have |(BO)]~‘ > 1. Recall that Py(8) = 9a(B) + A||B]|1. Thus
we have

~ B ~ L (a B
(VQAt (Bo) + Atﬁo)j = (VPAt (/30)>j =D, ((ﬁo)j) =0,
where the second equality follows from our assumption in (4.16).

Therefore, as long as €o € 8H ,80H1 satisfies (£0); = 0 for j € S*, term (i) is always zero for any 3'.
For term (ii) in (C.154), note that ,Bo is the global solution to the minimization problem in
(4.19). Hence Bo satisfies the exact optimality condition
a — VL } <0
max{ (Bo —#)"VL(Bo) } <
Therefore, taking maximum over 3’ € on both sides of (C.154), we obtain (C.153).
Now we are ready to prove that 5)\1& ,6'0 Note that the oracle estimator satisfies supp(ﬁ ) Q

S*. Meanwhile, by Theorem 5.5 we have H B,\, o < 5. Hence we have H(/B)‘t ,Bo) o
Therefore Lemma 5.1 yields

HB)\t - BO 2

27

EAt (3&) > ZA,: (Bo) + VEM (BO)T(B)\t - BO) + P
Z)\t (B\O) 2 EAt (I/B\At) + VE)\t (BAt)T(BO - B\At) + £

;g_ (C.155)
S lBo - Bz (©a150)
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Meanwhile, by the convexity of ¢; norm, we have

)‘tHBAtnl Z AtHBO“l + /\t(BAt - //B\O)T507 (C.157)
)‘tHBOH1 = AtHB)\tul_‘_At(B\O —B,\t)Tg- (C.158)
Adding (C.155)—(C.158), we obtain

0> (VEr (Br) + ME) (Bo—Br) + (VEr(Bo) + Méo) (Ba —Bo) +(p- — )|, — Boll2

(i) (i)
According to (C.152), we have

(EAt - ﬁo) (Vﬁxt (ﬂxt) + )\t€> < maX{(ﬂAt ﬂ')T(VENAt (th) + )\té\)} <0

which implies term (i) is nonnegatlve Similarly, according to (C.153), term (ii) is also nonnegative.
Hence we have (p— —(_ Hﬁ,\t 60H2 < 0. By (4. 5) we have p_ — (_ > 0, which implies [3,\t ,60

Thus we conclude that ﬁ )\, 1s the oracle estimator [30, which exactly recovers the support of 8*. [

D Theoretical Results about Semiparametric Elliptical Design Re-
gression

In this section, we first introduce the Catoni’s M-estimator of standard deviation, then we provide

the detailed proofs of some necessary results regarding semiparametric elliptical design regression'.

D.1 Catoni’s M-Estimator of Standard Deviation

Catoni (2012) proposed a novel method to estimate the mean and standard deviation of heavy-tail
distributions. Let Z = (Z1, ..., Z441) be the elliptically distributed random vector defined in §2.2.
We consider the estimator of the marginal mean E(Z;) (j = 1,...,d+1). Let h : R = R be a
continuous strictly increasing function satisfying

—log(1 — x + 2?/2) < h(z) <log(l+ z + 22/2).
For instance, we choose h(+) to be

" log(1 +z + 22/2), if z >0,
xTr) =
—log(1 —z +22/2), otherwise.

Let 0 € (0,1) be such that n > 2log(1/J). We introduce

as = \/2 10g(1/5)/<m) + 7%)’ (D.1)

16D.1, Lemma D.1 and Corollary D.2 come from an unpublished internal technical report. We provide them here
for completeness.
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where v is an upper bound of Var(Z;) for all j. Catoni’s estimator of E(Z;) is defined as ji; = [i;(n, d)
such that

n

> h(as(ziy—fiy)) =0, j=1,....d+1, (D.2)
=1

where z; ; is the i-th (i = 1,...,n) realizations of Z;. As h(-) is differentiable everywhere, we can
solve (D.2) with Newton’s method efficiently. Similarly we can estimate E(Zf) with m; defined in
a similar way. Then we obtain an estimator of the marginal standard deviation o;

aj:m, j=1,...,d+1. (D.3)

D.2 Proof of Lemma C.5

To establish results concerning the smallest sparse eigenvalue for K x, we need to prove several
concentration results. The next lemma and proposition provide the concentration inequality for
Catoni’s estimator of marginal standard deviation, which is defined in (D.3). We first consider the
estimator of variance in the following lemma.

Lemma D.1. Let X = (X1,...,X,;)” be a random vector and x1,...,X, be n independent real-
izations of X with Var(X;) = v; and E(X;-l) < M, for j =1,...,d. We assume that
R AR} = pimae, v = o {7}
For the estimator v; = m; — ﬂ? with m; and fi; defined in (D.2), if n > 5logd, we have, with
probability at least 1 — 2d~3,
logd

Al =l SOy

where C' is a constant.

Proof. For j € {1,...,d}, we use m; to estimate IE(XJQ) Catoni (2012) showed that

Pl ~ E(X3)]| > 1) < exp = 10).

Taking a union bound, we have

~ nt?
P~ 200} > ) <dew (= 7).

or equivalently, with probability at least 1 — d—3,

~ log d
gﬁgd{ymj —E(x})|} <2vary = (D.4)

Meanwhile, we use [i; to estimate E(X;). By similar arguments as above, we have

~ logd
max {’Mj - E(XJ)‘} < 24/Umax o8

1<j<d n
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with probability at least 1 — d~3.
Note that

~ 2 ~ ~
i A7 = EOO} < o {17 - B} e {17 + B

Since we assume that maxlgjgd{E(Xj)} < Umax, We have

~ 2 logd logd
s (7= Oy} = (s i) v 2D o
with probability at least 1 — d—3. Since logd/n < 1, from (D.6) we have,
~9 2 logd
121]?%<Xd{‘ﬂj - (E(X])) ‘} < (4pmax + 4v/Umax) * v/Umax n (D.7)

Combining (D.4) and (D.7), we have, with probability at least 1 — 2d =3,

logd
~ o ~2 ] <
ggfgxd{\ma 72— Var(X;)|} < © =,

where C = 2V M + (4Mmax + 4,/vmax),/vmax. O

We use ; = /v; to estimate o; = ,/v;. Using Lemma D.1, we derive a concentration inequality
for &; in the following corollary.

Corollary D.2. Let 0; = ,/vj and 0; = /v; for j = 1,...,d. By assuming o; > opin > 0 for all
j =1, ....d, we have, with probability at least 1 — 2d~3,

~ log d

max{\aj—aﬂ}gc o8 ,

1<j<d n

where C' is a constant.

Proof. By Lemma D.1, we have, with probability at least 1 — 2d~3,

- logd
max{|vj—vj|}§0 8%
1<j<d n
Since |vj — U;| = |oj — 75| - |oj + 7], it follows that
N C logd C  Jlogd
max {0 — 3|} < - <— .
t=7=d miﬂlﬁjﬁd{\%‘ + Ujl} mo Tmin Vo
As we assume that o; > oy for all j, we conclude the proof. O

Before we establish the sparse eigenvalue condition for K X, we provide a concentration result
of Rx in the following lemma.
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Lemma D.3 (Han and Liu (2013)). Let x1,...,x, be n realizations of a random vector X ~
EC4(0,Xx,Z) as in Definition 2.1. We assume that the smallest eigenvalue of the generalized
correlation matrix Zg( is strictly positive. Under the sign sub-Gaussian condition (See Han and
Liu (2013) for more details), the correlation matrix estimator Rx defined in (2.6) satisfies that,
with probability at least 1 —2d~—! — d~2,

‘UT(RX - 2%()”‘ slogd
sup 5 < Cy ——
vllo<s lvll3 n

for s € {1,...,d} and a sufficiently large n.

We now prove Lemma C.5.

Proof. Let D = diag(oy,...,04) and D= diag(a1,...,04). First we consider the smallest sparse
eigenvalue, which satisfies

TK xv
S(V2%L,s) = i { T XE
p-(ViLos) ||vl||r33s{ lvl13 }
S NTS (R S 2
_ .. [(Dv)'Rx(Dv) |Dol,
Jollo<s |Dol|2 lv13
. v"Rxv o
||vl||r3f<s{ 13 }'1%'1301{0”'}' (0-5)

The first term on the right-hand side of (D.8) is the smallest sparse eigenvalue of Rx. Since we
have from Lemma D.3 that, with probability at least 1 — 2d~! — d—2,

o7 (Rx — 5% )v

i <c /slogd'
lvllo<s lvll5 n

sup

Then for a sufficiently large n, we have

oI (=% - ﬁx)v < C4/ sl(;gd < %Amin(Zg(), for Jjvllp < s.

Here Amin (EOX) denotes the smallest eigenvalue of EOX, which is strictly positive by assumption.

Then we obtain

1 1 ~
§Amin (29() <vI's%v - §Amin (EOX) <vIRxwv, for |v[o<s.

Taking infimum over both sides, we get

-
. v'Rxv 1 0
inf { U XU S DA (5% >0, (D.9)
||v||o<s{ lvl3 } g nin (%)
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We now consider minlgjgd{ﬁj} in (D.8). In Corollary D.2 we prove that, with probability at least
1—2d3,

R logd )
|ajfaj|§0' %, for 1<j <d,

where C’ is a constant. For a sufficiently large n, we have
~ 1 .
Jj250j>0, for 1<j<d
with the same probability. Taking minimum over both sides, we get

. (A .
1r§nj12d{oj} > 5 1I§njl£d{gj} >0 (D.10)
with probability at least 1 —2d~2. Plugging (D.9) and (D.10) into the right-hand side of (D.8), we
reach the conclusion that p_ (VQE, 3) > 0.
Now we consider the largest sparse eigenvalue, which satisfies

e
pi (VL) = sup §UXY
lollo<s | lIvll3
~ TA ~
L (Do) Ra (D) Bl
lv]lo<s HD’UHE v]3
va{Xv ~
> — 5. it D.11
- nfﬁ?;{ ol } e 1) (D1

The first term on the right-hand side of (D.11) is the largest sparse eigenvalue of Rx. Since
we have from Lemma D.3 that, with probability at least 1 — 2d~! — d~2,

’vT(RX - 2OX)v‘ slogd
' <0y 2%C
lvllo<s lvll5 n

sup

Then for a sufficiently large n, we have

slogd <

o (R~ 5% )o < O 78D < D (3%), for [lwllo <5

Here Amax(Zg() denotes the largest eigenvalue of £% < +oo. Then we obtain

~ 1
’UTRX’U < 'UTE(;{'U + §Amax(20X) < AmaX(EOX)a for H’U”o < s.

[\CR GV

Taking supremum over both sides, we get

{UTﬁXv

sup
|03

lvllo<s

} < %Amax(zg() < +o0. (D.12)
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We now consider maxlgjgd{ﬁj} in (D.11). In Corollary D.2 we prove that, with probability at

least 1 — 2d3,
~ [logd .
loj — 5, < C' Oi , for 1<j<d,

where C' is a constant. For a sufficiently large n, we have

. 3 .
aj§50j<—i—oo, for 1<j<d
with the same probability. Taking minimum over both sides, we get

—~ 3
112?2%{0'] B 1Iilja<xd{0'j} < +00 (D ].3)

with probability at least 1 — 2d~—2. Plugging (D.12) and (D.13) into the right-hand side of (D.11),
we reach the conclusion that p (VQE, s) < +o00. O

D.3 Proof of Lemma C.4
Proof. For semiparametric elliptical design regression, we have
Vﬁ(,@*) = RX,Y — ﬁXﬂ* = RX,Y — EX,Y + EX,Y — ﬁx,@*,

where I/ix € R¥xd gnd ny € R are the submatrices of IA(Z € RE+Dx(d+D) defined in (3.13).
Since E(Y|X = x) = x''3*, we have

Sxy =E(XY)=EXXT3") =Zxp"
Hence we have

VLBl = [Kxy—Sxy+Ex8" - KxB
Before we upper bound the two terms on the right-hand side, we establish a concentration inequality
for Kz. Let Dz = diag(o1,...,04+1) and Dz = diag(oy,...,04+1), where oy1,...,0441 are the

marginal standard deviations of Z € R(4*+Y = (Y, X)T while G1,...,5441 are the corresponding
Catoni’s estimators defined in (D.3). We have

Yz =DzX%Dyg, Kz =DzRzDyz,

where Ry is the rank-based estimator of the generalized correlation matrix X% defined in (2.6).
Han and Liu (2012) proved that, with probability at least at least 1 — (d 4 1)~%/2,

~ log(d+ 1)
Ry -3y, < 0/ EED
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where ||M||max = maxi<; j<q{| M|} for M € R%*? We have

IDzRzDz -~ Dz%3Dz],,,
HDZ(ﬁZ — EOZ)DZ + (f)z — Dz)ﬁzDZ + f)zf{z(f)z — Dz) H
IDz(Rz - £%)Dz]|,,,, +[|(Dz ~ Dz)RzDz|

(D.14)

max

+|DzRz(Dz - D)

IA

max max max

< HDZH?H&XHﬁ'Z - 20ZH12113,X + HDZHmaxH]/jZ - DZHmax + H]/jZHmaxH]/jZ - DZHmax’
Following similar arguments in Corollary D.2, we have
~ log(d + 1 ~ log(d+1
[D2-Dsl,, <0y Y B, <Dy, roy /LY

with probability at least 1 —2(d+1)~3. We assume that o; (1 < j < d+1) is upper bounded, from
(D.14) we have, with probability at least 1 — (d +1)7%/2 — 2(d + 1)73,

~ log(d+ 1)
HEZ - KZHmax S C T’
which implies that with the same probability,
~ log(d + 1
[Roy Sy, <cy/ 20+
* I * * > * 1 d+1
|2x8" - Rx||. < 1811 B~ K|y < 1871y B EHL,
Then we reach the conclusion. ]
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